Lispy: a stmple Lisp-like language

Eric Bailey
May 10, 2018 1

For my own edification, and my eternal love of the LISP family and
PLT, what follows is an implementation in C of a simple, Lisp-like
programming language, based on Build Your Own Lisp [Holden,
2018a)]. Since I'm a bit of masochist, this is a literate programQ, writ-

ten using Noweb?.

Contents

Outline 2

Welcome

Defining the Language

7

R is for Read 8
E is for Fval(uate)

FEvaluating built-in operations

Built-in functions

Fvaluating (S)-expressions

P is for Print

L s for Loop 20
Error Handling

Headers
Full Listings

25
27

Chunks 38

Index 40
Glossary

References

42
43

19

21

9

14

7

17

11

! Current version: VERSION.
Last updated July 14, 2018.

2 https://en.wikipedia.org/wiki/
Literate_programming

3 Norman Ramsey. Noweb — a
simple, extensible tool for lit-
erate programming. https:
//www.cs.tufts.edu/~nr/noweb/,
2012. Accessed: 2018-05-13

https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Literate_programming
https://www.cs.tufts.edu/~nr/noweb/
https://www.cs.tufts.edu/~nr/noweb/

2a

2b

2c

Outline

LISPY: A SIMPLE LISP-LIKE LANGUAGE 2

r[Describe the outline]

(lispy.c 2a)=
(Include the necessary headers. 25b)

(Define some useful macros. 23a)

(Load the Lispy grammar. 7c)

(Define possible lval and error types. 22a)

(Define the Lispy data structures. 21c)

This definition is continued in chunks 2-6.
Root chunk (not used in this document).

(lispy.c 2a)+=
lval *lval_add(lval *xs, lval *x)

{

(Add an element to an S-expression. 11b)

return xs;

Defines:
lval_add, used in chunks 10g and 16b.
Uses lval 2lc.

(lispy.c 2a)+=
lval *lval_pop(lval *xs, int i)

(Eztract an element and shift the list. 18d)

Defines:
lval_pop, used in chunks 11h, 15, 16, and 19b.
Uses lval 2lc.

3a

3b

3c

3d

3e

LISPY: A SIMPLE LISP-LIKE LANGUAGE 3

(lispy.c 2a)+=
lval *lval_take(lval *xs, int i)

{
}

(Pop the list then delete it. 19b)

Defines:
lval_take, used in chunks 14h, 15d, and 17.
Uses lval 2lc.

(lispy.c 2a)+=
lval *1val_join(lval *xs, 1lval *ys)

(Add every y in ys to xs. 16b)

Defines:
lval_join, used in chunk 16a.
Uses 1val 2lc.

Forward declare* 1val_print, since it’s mutually recursive® with
lval_expr_print.

(lispy.c 2a)+=
void lval_print(lval *val);

Uses 1val 21c and lval_print 3e.
(lispy.c 2a)+=
void lval_expr_print(lval *expr, char open, char close)

{
}

(Print an expression. 19e)

Defines:
lval_expr_print, used in chunks 3d and 20a.
Uses 1val 2lc.

(lispy.c 2a)+=

void lval_print(lval *val)
{

}

(Print a Lispy value. 20a)

Defines:
lval_print, used in chunks 3, 4a, and 19f.
Uses lval 2lc.

4https://en.wikipedia.org/wiki/
Forward_declaration
5https://en.wikipedia.org/wiki/
Mutual_recursion

https://en.wikipedia.org/wiki/Forward_declaration
https://en.wikipedia.org/wiki/Mutual_recursion
https://en.wikipedia.org/wiki/Forward_declaration
https://en.wikipedia.org/wiki/Forward_declaration
https://en.wikipedia.org/wiki/Mutual_recursion
https://en.wikipedia.org/wiki/Mutual_recursion

4a

4b

4c

4d

4e

(lispy.c 2a)+=
void 1lval_println(lval *val)

lval_print(val);
putchar(’\n’);

Defines:
lval_println, used in chunk 19d.
Uses lval 21c and lval_print 3e.

(lispy.c 2a)+=
lval *builtin_list(lval *args)

{
}

(Convert an S-expression to a Q-expression. 14c)

Defines:
builtin_list, used in chunk 14b.
Uses lval 2lc.

(lispy.c 2a)+=
lval *builtin_head(lval *args)
{

}

(Pop the list and delete the rest. 14e)

Defines:
builtin_head, used in chunk 14d.
Uses lval 2lc.

(lispy.c 2a)+=
lval *builtin_tail(lval *args)
{

}

(Return the tail of a list. 15d)

Defines:
builtin_tail, used in chunk 15c.
Uses 1val 2lc.

(lispy.c 2a)+=
lval *builtin_join(lval *args)

{
}

(Return the concatenation of lists. 15f)

Defines:
builtin_join, used in chunk 15e.
Uses lval 2lc.

LISPY: A SIMPLE LISP-LIKE LANGUAGE 4

5¢c

5e

Forward declare 1val_eval, since it’s used by builtin_eval and
mutually recursive with lval_eval_sexpr.

(lispy.c 2a)+=
lval *lval_eval(lval* val);

Uses lval 21c.
(lispy.c 2a)+=
lval *builtin_eval(lval *args)

{
}

(Evaluate a Q-expression. 16d)

Defines:
builtin_val, never used.
Uses 1val 2lc.

(lispy.c 2a)+=
lval *builtin_op(char *op, lval *args)

{

(Ewal(uate) a built-in operation. 11g)

Defines:
builtin_binop, never used.
Uses lval 2lc.

(lispy.c 2a)+=

lval *builtin(char *fname, lval *args)

{
}

(Evaluate a built-in function or operation. 14b)

Defines:
builtin, used in chunk 18b.
Uses lval 2lc.

(lispy.c 2a)+=

lval* 1lval_eval_sexpr(lval *args)

{
}

(Bvaluate an S-expression. 17d)

Uses 1val 2lc.

LISPY: A SIMPLE LISP-LIKE LANGUAGE 5

6a (lispy.c 2a)+=
lval* lval_eval(lval* val)

{
}

(Bvaluate an expression. 18c)

Uses lval 2l1c.

6b (lispy.c 2a)+=
lval *lval_read_num(mpc_ast_t *ast)

{
(Read a number. 10a)
}
lval *lval_read(mpc_ast_t *ast)
{
(Read a Lispy value. 9e)
}
Defines:

lval_read, used in chunks 9d and 10g.
Uses ast 9d, 1val 21c, and mpc_ast_t 26f.

6c (lispy.c 2a)+=
int main(int argc, char *argv[])
{ (Define the language. 7d)
(Print version and exit information. 7a)
(Loop until the input is empty. 20c)

(Undefine and delete the parsers. 8c)

return @;

LISPY: A SIMPLE LISP-LIKE LANGUAGE 6

LISPY: A SIMPLE LISP-LIKE LANGUAGE 7

Welcome

What good is a Read-Eval-Print Loop (REPL) without a welcome
message? For now, simply print the version and describe how to exit.

Ta (Print version and exit information. Ta)=
puts(”Lispy v1.4.08");
puts(”Press ctrl-c to exit\n”);

Uses Lispy 7d.
This code is used in chunk 6c.

Defining the Language

In order to make sense of user input, we need to define a grammar.

7b (lispy.mpc Thy=
number “number” : /[-+]?[@-9]+(\.[0-9]+)2/ ;
symbol "symbol” : [[a-za-Z_+xU~\/\\=<>!%-]+/ ;

sexpr : (" <symbol> <expr>+ ')’ ;
gexpr : '{" (<symbol> | <expr>)* '}’ ;
expr : <number> | <sexpr> | <gexpr> ;
lispy : [7] <expr>x [$] ;

Root chunk (not used in this document).

Describe this trick

Tc (Load the Lispy grammar. 7c)=

static const char LISPY_GRAMMAR[] = {
#include "1ispy.xxd”
b

Defines:
LISPY_GRAMMAR, used in chunk 8b.
This code is used in chunk 2a.

See: https://stackoverflow.com/a/

To implement the grammar, we need to create some parsers. 411000

7d (Define the language. 7d)=

mpc_parser_t *Number = mpc_new(”number”);

mpc_parser_t *Symbol = mpc_new(”symbol”);

mpc_parser_t *Sexpr = mpc_new("sexpr”);

mpc_parser_t *Qexpr = mpc_new("gexpr”);

mpc_parser_t *Expr = mpc_new("expr”);

mpc_parser_t *Lispy = mpc_new("1ispy”);
Defines:

Expr, used in chunk 8a.

Lispy, used in chunks 7-9.

Number, used in chunk 8a.

Qexpr, used in chunk 8a.

Sexpr, used in chunk 8a.

Symbol, used in chunk 8a.
Uses mpc_new 26f and mpc_parser_t 26f.
This definition is continued in chunk 8b.
This code is used in chunk 6c.

https://stackoverflow.com/a/411000
https://stackoverflow.com/a/411000

8a

8b

8c

8d

8e

LISPY: A SIMPLE LISP-LIKE LANGUAGE 8

Finally, using the defined grammar and each of the (created parsers 8a),

(created parsers 8a)=

Number, Symbol, Sexpr, Qexpr, Expr, Lispy
Uses Expr 7d, Lispy 7d, Number 7d, Qexpr 7d, Sexpr 7d, and Symbol 7d.
This code is used in chunk 8.

. we can define the Lispy language.

(Define the language. 7d)+=
mpc_err_t *err = mpca_lang(MPCA_LANG_PREDICTIVE, LISPY_GRAMMAR,

(created parsers 8a));

if (err == NULL) {
puts(LISPY_GRAMMAR) ;
mpc_err_print(err);
mpc_err_delete(err);
exit(100);

}

Uses LISPY_GRAMMAR 7c, mpca_lang 26f, mpc_err_delete 26f, and mpc_err_print 26f.

Since we’re implementing this in C, we need to clean up after our-
selves. The mpcS library makes this easy, by providing the mpc_cleanup

function.

(Undefine and delete the parsers. 8c)=
mpc_cleanup(6, (created parsers 8a));

Uses mpc_cleanup 26f.
This code is used in chunk 6c.

R is for Read

To implement the R in REPL, use readline from libedit”.

(Read a line of user input. 8d)=
char *input = readline(”> ”);
Defines:
input, used in chunks 8, 9, and 21b.

Uses readline 26e.
This code is used in chunk 20d.

To check whether user input is nonempty, and thus whether we
should continue looping, use the following expression.
(input is nonempty 8e)=

input &8 *input

Uses input 8d.
This code is used in chunk 21a.

6 Daniel Holden. Micro Parser Com-
binators. https://github.com/
orangeduck/mpc, 2018b. Accessed:
2018-05-13

7 Jess Thrysoee. Editline Library
(libedit) — port of netbsd command
line editor library. http://thrysoee.
dk/editline/, 2017. Accessed: 2018-
05-13

https://github.com/orangeduck/mpc
https://github.com/orangeduck/mpc
http://thrysoee.dk/editline/
http://thrysoee.dk/editline/

9a

9b

9c

9d

9e

LISPY:

Here, input is functionally equivalent to input == NULL, and
*input is functionally equivalent to input[@] == '\0@', i.e. input is
non-null and nonempty, respectively.

So long as input is nonempty, add it to the 1ibedit® history table.
(Add input to the history table. 9a)=

add_history(input);

Uses add_history 26e and input 8d.
This code is used in chunk 21a.

Declare a variable, parsed, to hold the results of attempting to
parse user input as Lispy code.

(Declare a variable to hold parsing results. 9b)=

mpc_result_t parsed;

Defines:

parsed, used in chunks 9 and 20b.
Uses mpc_result_t 26f.
This code is used in chunk 21a.

To attempt said parsing, use mpc_parse, the result of which we can
branch on to handle success and failure.
(the input can be parsed as Lispy code 9c)=

mpc_parse(”<stdin>", input, Lispy, &parsed)

Uses Lispy 7d, input 8d, mpc_parse 26f, and parsed 9b.
This code is used in chunk 21a.

E is for Eval(uate)

Since our terms consist of only numbers and operations thereon,
the result of evaluating a Lispy expression can be represented as a
double-precision number.

(Bval(uate) the input. 9d)y=
mpc_ast_t *ast = parsed.output;

lval *result = lval_eval(lval_read(ast));
Defines:

ast, used in chunks 6b, 9, 10, and 19d.
Uses 1lval 21c, lval_read 6b, mpc_ast_t 26f, and parsed 9b.
This code is used in chunk 21a.

A SIMPLE LISP-LIKE LANGUAGE 9

8 Jess Thrysoee. Editline Library
(libedit) — port of netbsd command
line editor library. http://thrysoee.
dk/editline/, 2017. Accessed: 2018-
05-13

,—(Describe the evaluation strategy)

If the abstract syntax tree (AST) is tagged as a number, convert it
to a double.

(Read a Lispy value. 9e)=
if (strstr(ast—>tag, "number”))
return lval_read_num(ast);

Uses ast 9d and strstr 26d.
This definition is continued in chunks 10 and 11c.
This code is used in chunk 6b.

http://thrysoee.dk/editline/
http://thrysoee.dk/editline/

10a

10b

10c

10d

10e

10f

10g

LISPY: A SIMPLE LISP-LIKE LANGUAGE

Describe this

(Read a number. 10a)=
errno = 0;
double num = strtod(ast—>contents, NULL);
return errno 5= ERANGE ? lval_num(num) : lval_err(LERR_BAD_NUM);

Uses ast 9d, lval_err 23c, lval_num 22b, and strtod 26b.
This code is used in chunk 6b.

If the AST is tagged as a symbol, convert it to one.

(Read a Lispy value. 9e)+=
if (strstr(ast—>tag, "symbol”))
return lval_sym(ast—>contents);

Uses ast 9d, lval_sym 23d, and strstr 26d.

Describe this

(Read a Lispy value. 9e)+=
lval *val = NULL;

Uses lval 2lc.

If we’re at the root of the AST, create an empty list.

(Read a Lispy value. 9e)+=
if (!strcmp(ast—>tag, ">"))
val = lval_sexpr();
Uses ast 9d, 1val_sexpr 24a, and strcmp 26d.

If it’s tagged as a Q-expression, create an empty list.
(Read a Lispy value. 9e)+=
if (strstr(ast—>tag, "gexpr”))
val = lval_gexpr();
Uses ast 9d, 1val_gexpr 24b, and strstr 26d.

Similarly if it’s tagged as an S-expression, create an empty list.

(Read a Lispy value. 9e)+=
if (strstr(ast—>tag, "sexpr”))
val = lval_sexpr();

Uses ast 9d, 1val_sexpr 24a, and strstr 26d.
Describe this

(Read a Lispy value. 9e)+=
for (int i = @; i < ast—>children_num; i++) {

if('stremp(ast—>children[i]—contents, (")) continue;
if('stremp(ast—>children[i]—contents, ”)”)) continue;
if('stremp(ast—>children[i]—contents, "{”)) continue;
if('strcmp(ast—>children[i]—>contents, "}”)) continue;
if(!'strcmp(ast—>children[i]—>tag, "regex”)) continue;
val = lval_add(val, lval_read(ast—>children[i]));

Uses ast 9d, 1val_add 2b, lval_read 6b, and strcmp 26d.

10

11a

11b

llc

11d

11le

11f

11g

11h

(Reallocate the memory used. 11a)=
xs—>cell = realloc(xs—>cell, sizeof(lval *) * xs—>count);

Uses lval 2lc.
This code is used in chunks 11b and 19a.

(Add an element to an S-expression. 11b)=
Xs—>count++;
(Reallocate the memory used. 11a)
xs—>cell[xs—=>count - 1] = x;

This code is used in chunk 2b.

Finally, return the Lispy value.

(Read a Lispy value. 9e)+=
return val;

(For each argument 11d)=
for (int i = @; i < args—>count; i++)
This code is used in chunks 11g, 15f, and 17e.

(the argument is not a number 11e)=
!1val_is_num(args—>cell[i])

Uses lval_is_num 22c.
This code is used in chunk 11g.

(Delete the arguments and return a bad number error. 11f)=
lval_del(args);
return lval_err (LERR_BAD_NUM);

Uses 1val_del 25a and lval_err 23c.
This code is used in chunk 11g.

FEvaluating built-in operations

Ensure all arguments are numbers.

(Ewval(uate) a built-in operation. 11g)=
(For each argument 11d) {
if ((the argument is not a number 11e)) {
(Delete the arguments and return a bad number error. 11f)
}

This definition is continued in chunks 12 and 14a.
This code is used in chunk 5c.

(Pop the first element. 11h)=
lval_pop(args, 0);

Uses lval_pop 2c.

This code is used in chunks 12 and 18a.

LISPY: A SIMPLE LISP-LIKE LANGUAGE

Describe this, incl. how it’s not
cons

11

12a

12b

12c

12d

12e

12f

12g

Pop the first element.

(Ewval(uate) a built-in operation. 11g)+=
lval *result = (Pop the first element. 11h)

Uses lval 2l1c.

If the operation is unary subtraction, negate the operand.

(Bval(uate) a built-in operation. 11g)+=
if (!strcmp(op, "-") && !args—count)
result—=>num = -result—>num;

Uses strcmp 26d.

(Pop the next element. 12c)=
lval *y = (Pop the first element. 11h)

Uses 1val 21c.
This code is used in chunk 12d.

(Fval(uate) a built-in operation. 11g)+=
while (args—count > @) {
(Pop the next element. 12c)

(Perform a built-in operation. 12e)

If the op is "+”, perform addition.

(Perform a built-in operation. 12¢)=
if (!stremp(op, "+7)) {
result—=>num += y—>num;
}

Uses strcmp 26d.
This definition is continued in chunks 12 and 13.
This code is used in chunk 12d.

If the op is -, perform subtraction.

(Perform a built-in operation. 12e)+=
else if (!strcmp(op, "-")) {
result—=>num -= y—>num;
}

Uses stremp 26d.

If the op is "*”, perform multiplication.

(Perform a built-in operation. 12e¢)+=
else if (!strcmp(op, "*")) {
result—=>num *= y—>nunm;
}

Uses stremp 26d.

LISPY: A SIMPLE LISP-LIKE LANGUAGE

12

13a

13b

13c

13d

13e

LISPY: A SIMPLE LISP-LIKE LANGUAGE

If the op is "/, perform division, returning the appropriate error
and cleaning up when trying to divide by zero.

(Perform a built-in operation. 12e)+=
else if (!'stremp(op, "/")) {
if (ly=num) {
lval_del(result);
lval_del(y);
result = lval_err(LERR_DIV_ZERO);
break;

}

result—=>num /= y—=>num;
}

Uses 1lval_del 25a, lval_err 23c, and strcmp 26d.

If the op is %", calculate the integer modulo, returning the appro-
priate error when trying to divide by zero.

(Perform a built-in operation. 12e)+=
else if (!stremp(op, "4")) {
if (ly=num) {
lval_del(result);
lval_del(y);
result = lval_err(LERR_DIV_ZERO);
break;

}

result—>num = fmod(result—>num, y—>num);
}

Uses fmod 26¢, lval_del 25a, lval_err 23c, and strcmp 26d.

If the op is """, perform exponentiation.

(Perform a built-in operation. 12e)+=
else if (!stremp(op, ")) {
result—>num = pow(result—>num, y—>num);
}

Uses pow 26¢ and stremp 26d.

Otherwise, return a LERR_BAD_OP error.

(Perform a built-in operation. 12e)+=
else {
lval_del(result);
lval_del(y);
result = lval_err(LERR_BAD_OP);
break;

}

Uses 1val_del 25a and lval_err 23c.

Delete y, now that we’re done with it.

(Perform a built-in operation. 12e)+=
lval_del(y);
Uses 1val_del 25a.

13

14a

14b

1l4c

14d

14e

14f

l4g

14h

LISPY: A SIMPLE

Delete the input expression and return the result.

(Ewal(uate) a built-in operation. 11g)+=
lval_del(args);

return result;
Uses 1lval_del 25a.

Built-in functions

If the function name is 1ist, convert the given S-expression to a Q-
expression and return it.
(Fvaluate a built-in function or operation. 14b)=
if (!strcmp(1list”, fname))
return builtin_list(args);

Uses builtin_list 4b and strcmp 26d.
This definition is continued in chunks 14-17.
This code is used in chunk 5d.

(Convert an S-expression to a Q-expression. 14c)=
args—>type = LVAL_QEXPR;
return args;

Uses LVAL_QEXPR 22a.
This code is used in chunk 4b.

If the function name is head, pop the list and delete the rest.
(Bvaluate a built-in function or operation. 14b)+=
if (!strcmp("head”, fname))
return builtin_head(args);
Uses builtin_head 4c and strcmp 26d.

Ensure there is exactly one argument.

(Pop the list and delete the rest. 14e)=
LVAL_ASSERT(args, args—>count = 1,
"too many arguments for 'head’”);
This definition is continued in chunks 14 and 15.

This code is used in chunk 4c.

Ensure the first argument is a Q-expression.
(Pop the list and delete the rest. 14e)+=
LVAL_ASSERT (args, args—>cell[@]—>type = LVAL_QEXPR,
"invalid argument for ’'head’”);
Uses LVAL_QEXPR 22a.

Ensure the list passed to head is nonempty.

(Pop the list and delete the rest. 14e)+=
LVAL_ASSERT(args, args—>cell[@]—>count,
"cannot get 'head’ of the empty list”);

Take the first element of the list.

(Pop the list and delete the rest. 14e)+=
lval *val = lval_take(args, 0);
Uses lval 21c and lval_take 3a.

LISP-LIKE LANGUAGE

14

15a

15e

15f

LISPY: A SIMPLE LISP-LIKE LANGUAGE

Delete the rest.
(Pop the list and delete the rest. 14e)+=
while (val—count > 1)
lval_del(lval_pop(val, 1));
Uses 1val_del 25a and lval_pop 2c.

Return the head of the list.

(Pop the list and delete the rest. 1de)+=
return val;

If the function name is tail, return the given Q-expression with the
first element removed.

(Bvaluate a built-in function or operation. 14b)+=
if (!strcmp(tail”, fname))
return builtin_tail(args);
Uses builtin_tail 4d and strcmp 26d.

(Return the tail of a list. 15d)=
LVAL_ASSERT (args, args—>count = 1,
"too many arguments for 'tail’”);
LVAL_ASSERT(args, args—>cell[@]—>type == LVAL_QEXPR,
"invalid argument for 'tail’”);
LVAL_ASSERT(args, args—>cell[@]->count,
"cannot get 'tail’ of the empty list”);

lval *val = lval_take(args, 0);
lval_del(1lval_pop(val, 9));

return val;

Uses LVAL_QEXPR 22a, lval 21c, lval_del 25a, lval_pop 2c, and lval_take 3a.
This code is used in chunk 4d.

If the function name is join, concatenate the given Q-expressions.

(Evaluate a built-in function or operation. 14b)4+=
if (!stremp(join”, fname))
return builtin_join(args);
Uses builtin_join 4e and stremp 26d.

Ensure every argument is a Q-expression.

(Return the concatenation of lists. 15f)=
(For each argument 11d) {
LVAL_ASSERT (args, args—>cell[i]—>type == LVAL_QEXPR,
"invalid argument for 'join’”);

Uses LVAL_QEXPR 22a.
This definition is continued in chunk 16a.
This code is used in chunk 4e.

Split this up and describe

15

16a

16b

16¢

16d

LISPY: A SIMPLE LISP-LIKE LANGUAGE

(Return the concatenation of lists. 15f)+=
lval *res = lval_pop(args, 0);

while (args—>count) {
res = lval_join(res, lval_pop(args, 0));
}

lval_del(args);
return res;

Uses 1lval 21c, lval_del 25a, lval_join 3b, and lval_pop 2c.

(Add every y in ys to xs. 16b)=
while (ys—>count) {
xs = lval_add(xs, lval_pop(ys, 0));
}

lval_del(ys);

return xs;

Uses 1lval_add 2b, 1val_del 25a, and lval_pop 2c.
This code is used in chunk 3b.

If the function name is eval, convert a given Q-expression to an
S-expression, and evaluate it.

(Evaluate a built-in function or operation. 14b)4=
if (!strcmp(Teval”, fname))
return builtin_eval(args);
Uses stremp 26d.

Ensure exactly one Q-expression is passed to eval.

(Evaluate a Q-expression. 16d)=
LVAL_ASSERT(args, args—>count = 1,
"too many arguments for ’eval’”);

LVAL_ASSERT(args, args—>ce11[0]—>type = LVAL_QEXPR,
"invalid argument for ’eval’”);

Uses LVAL_QEXPR 22a.
This definition is continued in chunk 17a.
This code is used in chunk 5b.

Describe this

Describe this

16

17a

17b

17¢c

17d

17e

17f

LISPY: A SIMPLE LISP-LIKE LANGUAGE

Convert the Q-expression to an S-expression, by changing it’s type,
then evaluate and return it.
(Fvaluate a Q-expression. 16d)+=

lval *expr = lval_take(args, 0);

expr—>type = LVAL_SEXPR;

return lval_eval(expr);
Uses LVAL_SEXPR 22a, 1val 21c, and lval_take 3a.

If the function name is a built-in operation, perform and return it.

(Evaluate a built-in function or operation. 14b)4+=
if (strstr("+-/*~%", fname))
return builtin_op(fname, args);

Uses strstr 26d.

Otherwise, free the memory used by args and return an error.

(Evaluate a built-in function or operation. 14b)+=

lval_del(args);

return lval_err(LERR_BAD_FUNC);
Uses lval_del 25a and lval_err 23c.

Evaluating (S)-expressions

If the expression is empty, return it;

(Fvaluate an S-expression. 17d)=
if (largs—>count)
return args;

This definition is continued in chunks 17 and 18.
This code is used in chunk 5e.

(Evaluate an S-expression. 17d)+=
(For each argument 11d) {
args—>cell[i] = lval_eval(args—>cell[i]);
if (args—>cell[i]—>type = LVAL_ERR)
return lval_take(args, i);

Uses LVAL_ERR 22a 22a and lval_take 3a.

If we're dealing with a single expression, return it.

(Bvaluate an S-expression. 17d)+=
if (args—count = 1)
return lval_take(args, 0);

Uses lval_take 3a.

17

18a

18b

18c

18d

18e

18f

18g

LISPY: A SIMPLE LISP-LIKE LANGUAGE

(Evaluate an S-expression. 17d)+=
lval *car = (Pop the first element. 11h);
if (car—>type # LVAL_SYM) {
lval_del(car);
lval_del(args);

return lval_err(LERR_BAD_SEXPR);

Uses LVAL_SYM 22a, 1val 21c, lval_del 25a, and lval_err 23c.

(Fvaluate an S-expression. 17d)+=
lval *result = builtin(car—>sym, args);
lval_del(car);

return result;
Uses builtin 5d, lval 21c, and lval_del 25a.

If, and only if, an expression is an S-expression, we must evaluate it
recursively.

(Bvaluate an expression. 18c)=
if (val->type = LVAL_SEXPR)
return lval_eval_sexpr(val);

return val;
Uses LVAL_SEXPR 22a.

This code is used in chunk 6a.

Extract the element at index i.

(Extract an element and shift the list. 18d)=
lval *elem = xs—>cell[i];

Uses lval 2lc.
This definition is continued in chunks 18 and 19a.
This code is used in chunk 2c.

Shift memory after the element at index i.

(Extract an element and shift the list. 18d)+=
memmove (&s—>cell[i], 8&s—>cell[i + 1],
sizeof(lval *) * (xs—count - i - 1));

Uses lval 21c.

Decrease the count.

(Extract an element and shift the list. 18d)+=
xs—>count-;

(Return the extracted element. 18g)=
return elem;
This code is used in chunk 19.

18

19a

19b

19¢

19d

19e

19f

19g

Reallocate the memory used and return the extracted element.

(Eztract an element and shift the list. 18d)+=
(Reallocate the memory used. 11a)

(Return the extracted element. 18g)

(Pop the list then delete it. 19b)=
lval *elem = lval_pop(xs, i);
lval_del(xs);

Uses lval 21c, lval_del 25a, and lval_pop 2c.
This definition is continued in chunk 19c.
This code is used in chunk 3a.

Return the extracted element.

(Pop the list then delete it. 19b)+=
(Return the extracted element. 18g)

P is for Print

Upon success, print the result and delete the AST.

(Print the result and delete the AST. 19d)=
lval_println(result);

mpc_ast_delete(ast);

Uses ast 9d, lval_println 4a, and mpc_ast_delete 26f.
This code is used in chunk 21a.

Print the opening character.
(Print an expression. 19e)=
putchar(open);
This definition is continued in chunk 19.

This code is used in chunk 3d.

Print all but the last element with a trailing space.
(Print an expression. 19e)+=
for (int i = @; i < expr—>count; i++) {
lval_print(expr—>celll[i]);
if (i = (expr—>count - 1))
putchar(’ 7);

Uses lval_print 3e.
Print the closing character.

(Print an expression. 19e)+=
putchar(close);

LISPY: A SIMPLE LISP-LIKE LANGUAGE

Describe this

Describe this

19

LISPY: A SIMPLE LISP-LIKE LANGUAGE 20

20a (Print a Lispy value. 20a)=

switch (val->type) {

case LVAL_ERR:
printf("Error: %s”, val-err);
break;

case LVAL_NUM:
printf("4g”, val->num);
break;

case LVAL_QEXPR:
lval_expr_print(val, "{’, '}');
break;

case LVAL_SEXPR:
lval_expr_print(val, '(*, ")");
break;

case LVAL_SYM:
fputs(val->sym, stdout);
break;

}

Uses LVAL_ERR 22a 22a, LVAL_NUM 22a, LVAL_QEXPR 22a, LVAL_SEXPR 22a,
LVAL_SYM 22a, 1val_expr_print 3d, and printf 26a.
This code is used in chunk 3e.

Print and delete the error upon failure.

20b (Print and delete the error. 20b)=
mpc_err_print(parsed.error);
mpc_err_delete(parsed.error);

Uses mpc_err_delete 26f, mpc_err_print 26f, and parsed 9b.
This code is used in chunk 21a.

L s for Loop

20c (Loop until the input is empty. 20c)=
bool nonempty;
do {
(Read, eval(uate), and print. 20d)
} while (nonempty);

Defines:

nonempty, used in chunk 21a
Uses bool 25c.
This code is used in chunk 6c.

As previously described, in the body of the loop, Read a line of
user input.
20d (Read, eval(uate), and print. 20d)=
(Read a line of user input. 8d)

This definition is continued in chunk 21.
This code is used in chunk 20c.

LISPY: A SIMPLE LISP-LIKE LANGUAGE 21

If, and only if, it’s not empty, add it to the history table, Eval(uate)
it, and Print the result.

21a (Read, eval(uate), and print. 20d)+=
if ((nonempty = ((input is nonempty 8¢)))) {
(Add input to the history table. 9a)

(Declare a variable to hold parsing results. 9b)

if ((the input can be parsed as Lispy code 9c)) {
(Fval(uate) the input. 9d)
(Print the result and delete the AST. 19d)

} else {
(Print and delete the error. 20b)

}

Uses nonempty 20c.

Once we're done, deallocate the space pointed to by input, making
it available for futher allocation.

21b (Read, eval(uate), and print. 20d)+=
free(input);

Uses free 26b and input 8d. .
N.B. This is a no-op when !input.

Error Handling

Describe this struct

21c (Define the Lispy data structures. 21c)=
typedef struct lval {
lval_type_t type;
union {
double num;
char *err;
char *sym;
b
int count;
struct lval **cell;
} 1lval;

Defines:
lval, used in chunks 2-6, 9-12, 14-19, and 22-25.
Uses lval_type_t 22a.
This definition is continued in chunks 22-25.
This code is used in chunk 2a.

22a

22b

22¢

A Lispy value can be either a number or an error.

(Define possible lval and error types. 22a)=
typedef enum {
LVAL_ERR,
LVAL_NUM,
LVAL_QEXPR,
LVAL_SEXPR,
LVAL_SYM
} lval_type_t;

Defines:
LVAL_ERR, used in chunks 17e, 20a, 23c, and 25a.
LVAL_NUM, used in chunks 20a, 22, and 25a.
LVAL_QEXPR, used in chunks 14-16, 20a, 24b, and 25a.
LVAL_SEXPR, used in chunks 17a, 18¢c, 20a, 24a, and 25a.
LVAL_SYM, used in chunks 18a, 20a, 23d, and 25a.
lval_type_t, used in chunk 21c.

This code is used in chunk 2a.

Define a constructor for numbers.

(Define the Lispy data structures. 21c)+=
lval *1val_num(double num)

{
lval *val = malloc(sizeof(lval));
val->type = LVAL_NUM;
val->num = num;
return val;
}
Defines:

lval_num, used in chunk 10a.
Uses LVAL_NUM 22a and lval 21c.

Define a convenient predicate for numbers.

(Define the Lispy data structures. 21c)+=
bool lval_is_num(lval *val)

{
}

return val—=>type = LVAL_NUM;

Defines:
lval_is_num, used in chunk 1le.
Uses LVAL_NUM 22a, bool 25¢, and lval 21c.

LISPY: A SIMPLE LISP-LIKE LANGUAGE 22

Define a macro for asserting a condition or returning an error.

23a (Define some useful macros. 23a)=
ftdefine LVAL_ASSERT(args, cond, err) \
if (!(cond)) { \
lval_del(args); \

return lval_err(err); \

Uses 1val_del 25a and lval_err 23c.
This definition is continued in chunk 23b.
This code is used in chunk 2a.

23b (Define some useful macros. 23a)+=
fdefine LERR_BAD_FUNC ”unknown function”
fdefine LERR_BAD_NUM "invalid number”
fdefine LERR_BAD_OP "invalid operation”
#define LERR_DIV_ZERO "division by zero”

#define LERR_BAD_SEXPR ”invalid S-expression”

Define a constructor for errors.

23c (Define the Lispy data structures. 21c)+=

lval *1val_err(char *err)

{
lval *val = malloc(sizeof(lval));
val—>type = LVAL_ERR;
val—>err = err;

return val;

Defines:
lval_err, used in chunks 10a, 11f, 13, 17¢, 18a, and 23a.
Uses LVAL_ERR 22a 22a and lval 21c.

Define a constructor for symbol.
23d (Define the Lispy data structures. 21c)+=
lval *lval_sym(char *s)
{
lval *val = malloc(sizeof(lval));
val->type = LVAL_SYM;
val->sym = malloc(strlen(s) + 1);
strcpy(val—>sym, s);

return val;

Defines:
lval_sym, used in chunk 10b.
Uses LVAL_SYM 22a and lval 2lc.

LISPY: A SIMPLE LISP-LIKE LANGUAGE 23

Define a constructor for an S-expression.

24a (Define the Lispy data structures. 21c)+=
lval *lval_sexpr(void)

{

lval *val = malloc(sizeof(lval));
val—>type = LVAL_SEXPR;
val—>count = 0@;

val—>cell = NULL;

return val;

Defines:
lval_sexpr, used in chunk 10.
Uses LVAL_SEXPR 22a and lval 21c.

Define a constructor for a Q-expression.

24b (Define the Lispy data structures. 21c)+=
lval *lval_gexpr(void)

lval *val = malloc(sizeof(lval));
val->type = LVAL_QEXPR;
val—>count = 0;

val—>cell = NULL;

return val;

Defines:
lval_gexpr, used in chunk 10e.
Uses LVAL_QEXPR 22a and lval 21c.

LISPY: A SIMPLE LISP-LIKE LANGUAGE 24

25a

25b

25¢

Define a destructor for lval*.

(Define the Lispy data structures. 21c)+=
void lval_del(lval *val)

{

switch(val—=>type) {

case LVAL_ERR:
free(val—err);
break;

case LVAL_NUM:
break;

case LVAL_QEXPR:

case LVAL_SEXPR:
for (int i = 8; i < val—>count; i++)

lval_del(val—cell[i]);

free(val—>cell);
break;

case LVAL_SYM:
free(val—>sym);
break;

}

free(val);

}
Defines:

lval_del, used in chunks 11f, 13-19, and 23a.
Uses LVAL_ERR 22a 22a, LVAL_NUM 22a, LVAL_QEXPR 22a, LVAL_SEXPR 22a,
LVAL_SYM 22a, free 26b, and 1lval 21c.

Headers

(Include the necessary headers. 25b)=
(Include the boolean type and values. 25c)
(Include the standard 1/0 functions. 26a)
(Include the standard library definitions. 26b)
(Include some mathematical definitions. 26¢)
(Include some string operations. 26d)

(Include the line editing functions from libedit. 26e)
(Include the micro parser combinator definitions. 26f)

This code is used in chunk 2a.

(Include the boolean type and values. 25¢)=
tinclude <stdbool.h>
Defines:

bool, used in chunks 20c and 22c.
This code is used in chunk 25b.

LISPY: A SIMPLE LISP-LIKE LANGUAGE 25

Describe headers

LISPY: A SIMPLE LISP-LIKE LANGUAGE 26

26a (Include the standard 1/O functions. 26a)=
include <stdio.h>
Defines:

printf, used in chunk 20a.
This code is used in chunk 25b.

26b (Include the standard library definitions. 26b)=
finclude <stdlib.h>

Defines:
free, used in chunks 21b and 25a.
strtod, used in chunk 10a.

This code is used in chunk 25b.

26¢ (Include some mathematical definitions. 26¢)
finclude <math.h>

Defines:
fmod, used in chunk 13b.
pow, used in chunk 13c.

This code is used in chunk 25b.

26d (Include some string operations. 26d)=
finclude <string.h>

Defines:
stremp, used in chunks 10 and 12-16.
strstr, used in chunks 9, 10, and 17b.
This code is used in chunk 25b.

26e (Include the line editing functions from libedit. 26e)=
#include <editline/readline.h>

Defines:
add_history, used in chunk 9a.
readline, used in chunks 26e and 8d.
This code is used in chunk 25b.

26f (Include the micro parser combinator definitions. 26f)=
tinclude <mpc.h>

Defines:
mpca-lang, used in chunk 8b.
mpc_ast_delete, used in chunk 19d.
mpc_ast_print, never used.
mpc_ast_t, used in chunks 6b and 9d.
mpc_cleanup, used in chunks 26f and 8c.
mpc_err_delete, used in chunks 8b and 20b.
mpc_err_print, used in chunks 8b and 20b.
mpc_new, used in chunk 7d.
mpc_parse, used in chunks 26f and 9c.
mpc_parser_t, used in chunk 7d.
mpc_result_t, used in chunk 9b.

This code is used in chunk 25b.

Full Listings

lispy.mpc:

”

number "number
symbol "symbol”
sexpr
gexpr
expr
lispy

o [[-+17[0-9]+(\.[0-9]+)?/ ;
: [[a~za-Z_+¥lna\[\\=<>1%-]+/ ;

"(" <symbol> <expr>+ ')' ;

: '{" (<symbol> | <expr>)* '}' ;
. <number> | <sexpr> | <gexpr> ;

2 /7] <expr>x [$/

LISPY: A SIMPLE LISP-LIKE LANGUAGE 27

https://github.com/yurrriq/lispy/blob/master/lispy.mpc

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

lispy.c:

tHinclude
tHinclude
#include
#include
#include

ftinclude
#include

#tdefine LVAL_ASSERT(args, cond, err) \

<stdbool.h>
<stdio.h>
<stdlib.h>
<math.h>
<string.h>

<editline/readline.h>
<mpc.h>

if (*(cond)) { \

}

#define
#define
#tdefine
#tdefine
#define

static const char LISPY_GRAMMAR[] = {

#include

b

typedef
LVAL
LVAL
LVAL
LVAL
LVAL

lval_del(args); \

return lval_err(err); \

LERR_BAD_FUNC ’unknown function”
LERR_BAD_NUM ”invalid number”
LERR_BAD_OP invalid operation”
LERR_DIV_ZERO ”division by zero”
LERR_BAD_SEXPR invalid S-expression”

”lispy.xxd”

enum {
_ERR,
_NUM,
_QEXPR,
_SEXPR,
_SYM

} lval_type_t;

typedef
lval
unio

b

int

stru
} 1val;

struct 1lval {
_type_t type;
n {

double num;
char *err;
char *sym;

count;
ct lval **cell;

LISPY: A SIMPLE LISP-LIKE LANGUAGE 28

https://github.com/yurrriq/lispy/blob/master/lispy.c

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

lval *lval_num(double num)

{
lval *val = malloc(sizeof(1lval));
val—>type = LVAL_NUM;
val—>num = num;
return val;
}

bool lval_is_num(lval * val)

{

return val—>type == LVAL_NUM;

}

lval *lval_err(char *err)

{
lval *val = malloc(sizeof(lval));
val—>type = LVAL_ERR;
val—>err = err;
return val;

}

lval *1val_sym(char *s)

{
lval *val = malloc(sizeof(lval));
val—>type = LVAL_SYM;
val->sym = malloc(strlen(s) + 1);
strepy(val—>sym, s);
return val;

}

lval *1val_sexpr(void)

{
lval *val = malloc(sizeof(lval));
val—>type = LVAL_SEXPR;
val—>count = @;
val—>cell = NULL;
return val;

}

lval *1val_gexpr(void)

{

lval *val = malloc(sizeof(lval));

LISPY: A SIMPLE LISP-LIKE LANGUAGE 29

149

150

151

152

val—>type = LVAL_QEXPR;
val—count = 0;
val—>cell = NULL;

return val;

void lval_del(lval * val)
{
switch (val->type) {
case LVAL_ERR:
free(val—>err);
break;
case LVAL_NUM:
break;
case LVAL_QEXPR:
case LVAL_SEXPR:
for (int i = @; i < val—>count; i++)
lval_del(val—>celll[i]);
free(val—>cell);
break;
case LVAL_SYM:
free(val—>sym);
break;

}

free(val);

lval *1val_add(lval * xs, lval * x)
{

Xxs—>count++;
xs—>cell = realloc(xs—>cell, sizeof(lval *) * xs—count);
xs—>cell[xs—>count - 1] = x;

return xs;

lval *1val_pop(lval * xs, int i)
{

lval *elem = xs—>cell[i];

memmove (&xs—>cell[i], &xs—>cell[i + 1],
sizeof(lval *) * (xs—>count - i - 1));

xs—>count--;

xs—>cell = realloc(xs—>cell, sizeof(lval *) * xs—count);

LISPY: A SIMPLE LISP-LIKE LANGUAGE 30

153

154

155

156

157

158

160

161

162

163

165

166

167

168

170

171

172

173

175

176

177

178

180

181

182

183

185

186

187

188

190

191

192

193

195

196

197

198

199

200

201

202

203

return elem;

}
lval *1val_take(lval * xs, int i)
{
lval *elem = lval_pop(xs, i);
lval_del(xs);
return elem;
}

lval *lval_join(lval * xs, lval * ys)

while (ys—>count) {
xs = lval_add(xs, lval_pop(ys, 0));
}

lval_del(ys);

return xs;

void lval_print(lval * val);

void lval_expr_print(lval * expr, char open, char close)
{
putchar (open) ;
for (int i = @; i < expr—>count; i++) {
lval_print(expr—>cell[i]);
if (i = (expr—>count - 1))
putchar(' ');
}

putchar(close);

void lval_print(lval * val)
{
switch (val->type) {
case LVAL_ERR:
printf("Error: Y%s”, val—err);
break;
case LVAL_NUM:
printf(%g”, val—>num);
break;
case LVAL_QEXPR:

LISPY: A SIMPLE LISP-LIKE LANGUAGE 31

251

252

253

254

LISPY: A SIMPLE LISP-LIKE LANGUAGE 32

lval_expr_print(val, '{', '}');
break;

case LVAL_SEXPR:
lval_expr_print(val, '(', ')');
break;

case LVAL_SYM:
fputs(val—>sym, stdout);
break;

void lval_println(lval * val)

{

lval_print(val);
putchar('\n');

lval *builtin_list(lval * args)

{

args—>type = LVAL_QEXPR;
return args;

lval *builtin_head(lval * args)

{

LVAL_ASSERT (args, args—>count = 1, "too many arguments for 'head'”);
LVAL_ASSERT (args, args—>cell[0]—>type == LVAL_QEXPR,
"invalid argument for 'head'”);
LVAL_ASSERT (args, args—>cell[@]—>count,
"cannot get 'head' of the empty list”);
lval *val = lval_take(args, 0);
while (val—count > 1)
lval_del(1lval_pop(val, 1));
return val;

lval *builtin_tail(lval * args)

{

LVAL_ASSERT (args, args—>count = 1, "too many arguments for 'tail'”);
LVAL_ASSERT (args, args—>cell[0]—>type == LVAL_QEXPR,

"invalid argument for 'tail'”);
LVAL_ASSERT (args, args—>cell[@]—>count,

"cannot get 'tail' of the empty list”);

lval *val = lval_take(args, 0);
lval_del(1lval_pop(val, 0));

302

303

304

305

LISPY: A SIMPLE LISP-LIKE LANGUAGE 33

return val;

lval *builtin_join(lval * args)

{

}

for (int i = @; i < args—>count; i++) {
LVAL_ASSERT (args, args—cell[i]|—>type = LVAL_QEXPR,
"invalid argument for 'join'”);

}
lval *res = lval_pop(args, 0);
while (args—count) {
res = lval_join(res, lval_pop(args, 0));
}
lval_del(args);

return res;

lval *lval_eval(lval * val);

lval *builtin_eval(lval * args)

{

LVAL_ASSERT (args, args—>count = 1, "too many arguments for 'eval'”);

LVAL_ASSERT (args, args—>cell[@]—>type = LVAL_QEXPR,
"invalid argument for 'eval'”);

lval *expr = lval_take(args, 0);
expr—>type = LVAL_SEXPR;

return lval_eval(expr);

lval *builtin_op(char *op, lval * args)

{

for (int i = @; i < args—>count; i++) {
if ('lval_is_num(args—>cell[i])) {
lval_del(args);
return lval_err(LERR_BAD_NUM);

}

lval *result = lval_pop(args, 0);

if (!stremp(op, "-”) && 'args—>count)
result—=num = -result—>num;

while (args—>count > 0) {
lval *y = lval_pop(args, 0);

if ('stremp(op, "+"7)) {
result—=>num += y—>num;
} else if (!stremp(op, "-")) {
result—=>num -= y—>num;
} else if (!stremp(op, "*")) {
result—=>num *= y—>num;
} else if (!stremp(op, /")) {
if (ly—=>num) {
lval_del(result);
lval_del(y);
result = lval_err(LERR_DIV_ZERO);
break;
}
result—num /= y—>num;
} else if (!stremp(op, "4")) {
if ('y—=>num) {
lval_del(result);
lval_del(y);
result = lval_err(LERR_DIV_ZERD);
break;
}
result—>num = fmod(result—>num, y—>num);
} else if (!stremp(op, ")) {
result—>num = pow(result—>num, y—>num) ;
} else {
lval_del(result);
lval_del(y);
result = lval_err(LERR_BAD_OP);
break;
}
lval_del(y);
}

lval_del(args);

return result;

lval *builtin(char *fname, lval * args)

{
if (!stremp(”1list”, fname))
return builtin_list(args);

if (!strcmp(”head”, fname))

LISPY: A SIMPLE LISP-LIKE LANGUAGE 34

372

400

404

405

406

407

}

return builtin_head(args);
if (!stremp(”tail”, fname))
return builtin_tail(args);
if (!stremp(”join”, fname))
return builtin_join(args);
if (!strcmp(”eval”, fname))
return builtin_eval(args);
if (strstr(”+-/*~%", fname))
return builtin_op(fname, args);

lval_del(args);

return lval_err(LERR_BAD_FUNC);

lval *lval_eval_sexpr(lval * args)

{

if (largs—>count)
return args;
for (int i = @; i < args—>count; i++) {
args—>cell[i] = lval_eval(args—>celll[i]);
if (args—>cell[i|—>type == LVAL_ERR)
return lval_take(args, i);

}

if (args—>count = 1)
return lval_take(args, 0);

lval *car = lval_pop(args, 0);;

if (car—>type # LVAL_SYM) {
lval_del(car);
lval_del(args);

return lval_err(LERR_BAD_SEXPR);
}

lval *result = builtin(car—>sym, args);
lval_del(car);

return result;

lval *lval_eval(lval * val)

{

if (val—>type = LVAL_SEXPR)
return lval_eval_sexpr(val);

return val;

LISPY: A SIMPLE LISP-LIKE LANGUAGE 35

LISPY: A SIMPLE LISP-LIKE LANGUAGE 36

s00 1val *lval_read_num(mpc_ast_t * ast)

410 {

411 errno = 0;

112 double num = strtod(ast—>contents, NULL);

113 return errno == ERANGE ? lval_num(num) : lval_err(LERR_BAD_NUM);
414 }

415

416

sz lval *lval_read(mpc_ast_t * ast)

418 {

410 if (strstr(ast—>tag, "number”))

420 return lval_read_num(ast);

421

122 if (strstr(ast—>tag, "symbol”))

123 return lval_sym(ast—>contents);

424

425 lval *val = NULL;

126 if (!strcmp(ast—tag, ">"))

127 val = lval_sexpr();

128 if (strstr(ast—>tag, "gexpr”))

1429 val = lval_gexpr();

1430 if (strstr(ast—>tag, "sexpr”))

431 val = lval_sexpr();

432

133 for (int i = @; i < ast—>children_num; i++) {

134 if (!'strcmp(ast—>children[i]—>contents, ("))
435 continue;

136 if (!strcmp(ast—>children[i]—>contents, ”)”))
437 continue;

138 if (!strcmp(ast—>children[i]->contents, "{"))
439 continue;

140 if (!'strcmp(ast—>children[i]—>contents, "}"))
441 continue;

442 if (!strcmp(ast—>children[i]—>tag, "regex”))
443 continue;

144 val = lval_add(val, lval_read(ast—>children[i]));
445 }

446

447 return val;

448 }

a1 int main(int arge, char *argv[])

452 {

153 mpc_parser_t *Number = mpc_new(”number”);
154 mpc_parser_t *Symbol = mpc_new(”symbol”);
155 mpc_parser_t *Sexpr = mpc_new(”sexpr”);
156 mpc_parser_t *Qexpr = mpc_new(”qexpr”);
457 mpc_parser_t *Expr = mpc_new(”expr”);

158 mpc_parser_t *Lispy = mpc_new(”lispy”);

459

460

461

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

481

482

483

484

486

487

488

489

491

492

493

494

496

497

498

499

LISPY: A SIMPLE LISP-LIKE LANGUAGE 37

mpc_err_t *err = mpca_lang(MPCA_LANG_PREDICTIVE, LISPY_GRAMMAR,
Number, Symbol, Sexpr, Qexpr, Expr, Lispy);

if (err # NULL) {
puts(LISPY_GRAMMAR) ;
mpc_err_print(err);
mpc_err_delete(err);
exit(100);

}

puts(“Lispy v1.4.0");
puts("Press ctrl-c to exit\n");

bool nonempty;
do {
char *input = readline(”> ”);
if ((nonempty = (input && *input))) {
add_history(input);

mpc_result_t parsed;
if (mpc_parse(”<stdin>", input, Lispy, &parsed)) {
mpc_ast_t *ast = parsed.output;

lval *result = lval_eval(lval_read(ast));
lval_println(result);

mpc_ast_delete(ast);
} else {

mpc_err_print(parsed.error);
mpc_err_delete(parsed.error);

}

free(input);
} while (nonempty);

mpc_cleanup(6, Number, Symbol, Sexpr, Qexpr, Expr, Lispy);

return @;

LISPY: A SIMPLE LISP-LIKE LANGUAGE

Chunks

(Add an element to an S-expression. 11b) 2b, 11b

(Add every y in ys to xs. 16b) 3b, 16b

(Add input to the history table. 9a) 9a, 21a

(Convert an S-expression to a Q-expression. 14c) 4b, ldc

(Declare a variable to hold parsing results. 9b) 9b, 21a

(Define possible lval and error types. 22a) 2a, 22a

(Define some useful macros. 23a) 2a, 23a, 23b

(21c, 22b, 22c, 23c
24a, 24b, 2ba

(Define the language. 7d) 6c¢, 7d, 8b

(Delete the arguments and return a bad number error. 11f) 11f, 11g

(EBvaluate a Q-expression. 16d) 5b, 16d, 17a

(EBvaluate a built-in function or operation. 14b) 5d, 14b, 14d, 15c¢, 15e,
16¢, 17b, 17¢

Eval(uate) a built-in operation. 11g) 5c, 11g, 12a, 12b, 12d, 14a

(

(

(Evaluate an expression. 18c) 6a, 18¢

(Bval(uate) the input. 9d) 9d, 21a

(Extract an element and shift the list. 18d) 2c, 18d, 18e, 18f, 19a

(For each argument 11d) 11d, 11g, 15f, 17e

(Include some mathematical definitions. 26c) 25b, 26¢

(Include some string operations. 26d) 25b, 26d

(Include the boolean type and values. 25¢) 25b, 25¢

(Include the line editing functions from libedit. 26e) 25b, 26e

(Include the micro parser combinator definitions. 26f) 25b, 26f

(Include the necessary headers. 25b) 2a, 25b

(Include the standard I/0 functions. 26a) 25b, 26a

(Include the standard library definitions. 26b) 25b, 26b

(Load the Lispy grammar. 7c) 2a, 7c

(Loop until the input is empty. 20c) 6¢, 20¢

(Perform a built-in operation. 12¢) 12d, 12e, 12f, 12g, 13a, 13b, 13c,
13d, 13e

(Pop the first element. 11h) 11h, 12a, 12¢, 18a

(Pop the list and delete the rest. 14e) 4c, 14e, 14f, 14g, 14h, 15a, 15b

(Pop the list then delete it. 19b) 3a, 19b, 19¢

(Pop the next element. 12¢) 12c, 12d

(Print a Lispy value. 20a) 3e, 20a

(

(

(

(

(

Print an expression. 19¢) 3d, 19e, 191, 19g

Print and delete the error. 20b) 20b, 21a

Print the result and delete the AST. 19d) 19d, 21a
Print version and exit information. 7a) 6c, Ta

38

LISPY: A SIMPLE LISP-LIKE LANGUAGE 39

(Read a line of user input. 8d) 8d, 20d

(Read a number. 10a) 6b, 10a

(Read, eval(uate), and print. 20d) 20c, 20d, 21a, 21b
(Reallocate the memory used. 11a) 1la, 11b, 19a
(Return the concatenation of lists. 15f) 4e, 15f, 16a
(Return the extracted element. 18g) 18g, 19a, 19c¢
(Return the tail of a list. 15d) 4d, 15d

(Undefine and delete the parsers. sc) 6c, 8¢
(created parsers 8a) 8a, 8b, 8¢

(input is nonempty ge) 8e, 21a

(

(lispy.mpc) Tb
(the argument is not a number 11e) 1lle, 1lg
(the input can be parsed as Lispy code 9¢) 9c, 21a

LISPY: A SIMPLE LISP-LIKE LANGUAGE 40

Index

Expr: 7d, 8a

LISPY_GRAMMAR: 7c, 8b

LVAL_ERR: 17e, 20a, 22a, 22a, 23c, 25a

LVAL_NUM: 20a, 22a, 22b, 22¢, 25a

LVAL_QEXPR: 14c, 14f, 15d, 15f, 16d, 20a, 22a, 24b, 25a

LVAL_SEXPR: 17a, 18c, 20a, 22a, 24a, 25a

LVAL_SYM: 18a, 20a, 22a, 23d, 25a

Lispy: 7a, 7d, 8a, 9c

Number: 7d, 8a

Qexpr: 7d, 8a

Sexpr: 7d, 8a

Symbol: 7d, 8a

add_history: 9a, 26e

ast: 6b, 9d, 9e, 10a, 10b, 10d, 10e, 10f, 10g, 19d

bool: 20c, 22c¢, 25¢

builtin: 5d, 18b

builtin_binop: 5c¢

builtin_head: 4c, 14d

builtin_join: d4e, 15e

builtin_list: 4b, 14b

builtin_tail: 4d, 15c

builtin_val: 5b

fmod: 13b, 26¢

free: 21b, 25a, 26b

input: 8d, 8e, 8d, 8d, 9a, 9c, 8d, 21b

lval: 2b, 2¢, 3a, 3b, 3c, 3d, 3e, 4a, 4b, 4c, 4d, 4e, 5a, 5b, 5S¢, 5d, 5e,
6a, 6b, 9d, 10c, 11a, 12a, 12¢, 14h, 15d, 16a, 17a, 18a, 18b, 18d, 18e¢
19b, 21¢, 22b, 22¢, 23¢, 23d, 24a, 24b, 25a

lval_add: 2b, 10g, 16b

lval_del: 11f, 13a, 13b, 13d, 13e, 14a, 15a, 15d, 16a, 16b, 17c, 18a,
18D, 19b, 23a, 25a

lval_err: 10a, 11f, 13a, 13b, 13d, 17¢, 18a, 23a, 23c

lval_expr_print: 3d, 3d, 20a

lval_is_num: 1le, 22¢

lval_join: 3b, 16a

lval_num: 10a, 22b

lval_pop: 2c, 11h, 15a, 15d, 16a, 16b, 19b

lval_print: 3e, 3c, 3e, 4a, 19f

lval_println: 4a, 19d

lval_gexpr: 10e, 24b

lval_read: 6b, 9d, 10g

lval_sexpr: 10d, 10f, 24a

LISPY:

lval_sym: 10b, 23d

lval_take: 3a, 14h, 15d, 17a, 17e, 17f

lval_type_t: 21c, 22a

mpca_-lang: 8b, 26f

mpc_ast_delete: 19d, 26f

mpc_ast_print: 26f

mpc_ast_t: 6b, 9d, 26f

mpc_cleanup: 26f, 8c, 26f

mpc_err_delete: 8b, 20b, 26f

mpc_err_print: 8b, 20b, 26f

mpc_new: 7d, 26f

mpc_parse: 26f, 9c, 26f

mpc_parser_t: 7d, 26f

mpc_result_t: 9b, 26f

nonempty: 20c, 21a

parsed: 9b, 9b, 9¢c, 9d, 20b

pow: 13c, 26¢

printf: 20a, 26a

readline: 26e, 8d, 26e

stremp: 10d, 10g, 12b, 12e, 12f, 12g, 13a, 13b, 13c, 14b, 14d, 15¢, 15e,
16¢, 26d

strstr: 9e, 10b, 10e, 10f, 17b, 26d

strtod: 10a, 26b

A SIMPLE LISP-LIKE LANGUAGE 41

LISPY:

Glossary

AST abstract syntax tree, a tree representation of the abstract syn-
tactic structure of source code. 9, 10, 19

grammar 7,8

A SIMPLE LISP-LIKE LANGUAGE 42

,—[Describe what a grammar is

parser 7

,—[Describe what a parser is

PLT programming language theory, 1

REPL Read-Eval-Print Loop, 7,8

Describe programming language
theory

'—[Describe what a REPL is

)
)
J
)

LISPY: A SIMPLE LISP-LIKE LANGUAGE

References

Daniel Holden. Build Your Own Lisp. http://buildyourounlisp.conm,
2018a. Accessed: 2018-05-13.

Daniel Holden. Micro Parser Combinators. https://github.com/
orangeduck/mpc, 2018b. Accessed: 2018-05-13.

Norman Ramsey. Noweb — a simple, extensible tool for literate pro-
gramming. https://uww.cs.tufts.edu/~nr/noweb/, 2012. Accessed:
2018-05-13.

Jess Thrysoee. Editline Library (libedit) — port of netbsd command
line editor library. http://thrysoee.dk/editline/, 2017. Accessed:
2018-05-13.

43

http://buildyourownlisp.com
https://github.com/orangeduck/mpc
https://github.com/orangeduck/mpc
https://www.cs.tufts.edu/~nr/noweb/
http://thrysoee.dk/editline/

LISPY: A SIMPLE LISP-LIKE LANGUAGE 44

Todo list

|| Describe the outline 2
|| Describe this trick L 7
[Describe the evaluation strategy 9
| | Describe this 10
| | Describe this 10
| | Describe this 10
D Describe this, incl. how it’snot cons 11
|| Split this up and describe L 15
| | Describe this 16
| | Describe this 16
| | Describe this 19
| | Describe this 19
|| Describe this struct oL L0 21
|| Describe headers oL 25
|| Describe what a grammaris 42
D Describe what a parseris 42
D Describe programming language theory 42

Describe what a REPLis 42
]

	Outline
	Welcome
	Defining the Language
	R is for Read
	E is for Eval(uate)
	P is for Print
	L is for Loop
	Error Handling
	Headers
	Full Listings
	Chunks
	Index
	Glossary
	References

