
Lispy: a simple Lisp-like language
Eric Bailey
May 10, 2018 1 1 Current version: VERSION.

Last updated July 14, 2018.

For my own edification, and my eternal love of the LISP family and
PLT, what follows is an implementation in C of a simple, Lisp-like
programming language, based on Build Your Own Lisp [Holden,
2018a]. Since I’m a bit of masochist, this is a literate program2, writ- 2 https://en.wikipedia.org/wiki/

Literate_programmingten using Noweb3.
3 Norman Ramsey. Noweb – a
simple, extensible tool for lit-
erate programming. https:
//www.cs.tufts.edu/~nr/noweb/,
2012. Accessed: 2018-05-13

Contents

Outline 2
Welcome 7
Defining the Language 7
R is for Read 8
E is for Eval(uate) 9

Evaluating built-in operations 11
Built-in functions 14
Evaluating (S)-expressions 17

P is for Print 19
L is for Loop 20
Error Handling 21
Headers 25
Full Listings 27
Chunks 38
Index 40
Glossary 42
References 43

https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Literate_programming
https://www.cs.tufts.edu/~nr/noweb/
https://www.cs.tufts.edu/~nr/noweb/

lispy: a simple lisp-like language 2

Outline

Describe the outlineDescribe the outline

2a ⟨lispy.c 2a⟩≡
⟨Include the necessary headers. 25b⟩

⟨Define some useful macros. 23a⟩

⟨Load the Lispy grammar. 7c⟩

⟨Define possible lval and error types. 22a⟩

⟨Define the Lispy data structures. 21c⟩

This definition is continued in chunks 2–6.
Root chunk (not used in this document).

2b ⟨lispy.c 2a⟩+≡
lval *lval_add(lval *xs, lval *x)
{

⟨Add an element to an S-expression. 11b⟩

return xs;
}

Defines:
lval_add, used in chunks 10g and 16b.

Uses lval 21c.

2c ⟨lispy.c 2a⟩+≡
lval *lval_pop(lval *xs, int i)
{

⟨Extract an element and shift the list. 18d⟩
}

Defines:
lval_pop, used in chunks 11h, 15, 16, and 19b.

Uses lval 21c.

lispy: a simple lisp-like language 3

3a ⟨lispy.c 2a⟩+≡
lval *lval_take(lval *xs, int i)
{

⟨Pop the list then delete it. 19b⟩
}

Defines:
lval_take, used in chunks 14h, 15d, and 17.

Uses lval 21c.

3b ⟨lispy.c 2a⟩+≡
lval *lval_join(lval *xs, lval *ys)
{

⟨Add every y in ys to xs. 16b⟩
}

Defines:
lval_join, used in chunk 16a.

Uses lval 21c.

Forward declare4 lval_print, since it’s mutually recursive5 with 4 https://en.wikipedia.org/wiki/
Forward_declaration
5 https://en.wikipedia.org/wiki/
Mutual_recursion

lval_expr_print.
3c ⟨lispy.c 2a⟩+≡

void lval_print(lval *val);

Uses lval 21c and lval_print 3e.

3d ⟨lispy.c 2a⟩+≡
void lval_expr_print(lval *expr, char open, char close)
{

⟨Print an expression. 19e⟩
}

Defines:
lval_expr_print, used in chunks 3d and 20a.

Uses lval 21c.

3e ⟨lispy.c 2a⟩+≡
void lval_print(lval *val)
{

⟨Print a Lispy value. 20a⟩
}

Defines:
lval_print, used in chunks 3, 4a, and 19f.

Uses lval 21c.

https://en.wikipedia.org/wiki/Forward_declaration
https://en.wikipedia.org/wiki/Mutual_recursion
https://en.wikipedia.org/wiki/Forward_declaration
https://en.wikipedia.org/wiki/Forward_declaration
https://en.wikipedia.org/wiki/Mutual_recursion
https://en.wikipedia.org/wiki/Mutual_recursion

lispy: a simple lisp-like language 4

4a ⟨lispy.c 2a⟩+≡
void lval_println(lval *val)
{

lval_print(val);
putchar(’\n’);

}

Defines:
lval_println, used in chunk 19d.

Uses lval 21c and lval_print 3e.

4b ⟨lispy.c 2a⟩+≡
lval *builtin_list(lval *args)
{

⟨Convert an S-expression to a Q-expression. 14c⟩
}

Defines:
builtin_list, used in chunk 14b.

Uses lval 21c.

4c ⟨lispy.c 2a⟩+≡
lval *builtin_head(lval *args)
{

⟨Pop the list and delete the rest. 14e⟩
}

Defines:
builtin_head, used in chunk 14d.

Uses lval 21c.

4d ⟨lispy.c 2a⟩+≡
lval *builtin_tail(lval *args)
{

⟨Return the tail of a list. 15d⟩
}

Defines:
builtin_tail, used in chunk 15c.

Uses lval 21c.

4e ⟨lispy.c 2a⟩+≡
lval *builtin_join(lval *args)
{

⟨Return the concatenation of lists. 15f⟩
}

Defines:
builtin_join, used in chunk 15e.

Uses lval 21c.

lispy: a simple lisp-like language 5

Forward declare lval_eval, since it’s used by builtin_eval and
mutually recursive with lval_eval_sexpr.

5a ⟨lispy.c 2a⟩+≡
lval *lval_eval(lval* val);

Uses lval 21c.

5b ⟨lispy.c 2a⟩+≡
lval *builtin_eval(lval *args)
{

⟨Evaluate a Q-expression. 16d⟩
}

Defines:
builtin_val, never used.

Uses lval 21c.

5c ⟨lispy.c 2a⟩+≡
lval *builtin_op(char *op, lval *args)
{

⟨Eval(uate) a built-in operation. 11g⟩
}

Defines:
builtin_binop, never used.

Uses lval 21c.

5d ⟨lispy.c 2a⟩+≡
lval *builtin(char *fname, lval *args)
{

⟨Evaluate a built-in function or operation. 14b⟩
}

Defines:
builtin, used in chunk 18b.

Uses lval 21c.

5e ⟨lispy.c 2a⟩+≡
lval* lval_eval_sexpr(lval *args)
{

⟨Evaluate an S-expression. 17d⟩
}

Uses lval 21c.

lispy: a simple lisp-like language 6

6a ⟨lispy.c 2a⟩+≡
lval* lval_eval(lval* val)
{

⟨Evaluate an expression. 18c⟩
}

Uses lval 21c.

6b ⟨lispy.c 2a⟩+≡
lval *lval_read_num(mpc_ast_t *ast)
{

⟨Read a number. 10a⟩
}

lval *lval_read(mpc_ast_t *ast)
{

⟨Read a Lispy value. 9e⟩
}

Defines:
lval_read, used in chunks 9d and 10g.

Uses ast 9d, lval 21c, and mpc_ast_t 26f.

6c ⟨lispy.c 2a⟩+≡
int main(int argc, char *argv[])
{

⟨Define the language. 7d⟩

⟨Print version and exit information. 7a⟩

⟨Loop until the input is empty. 20c⟩

⟨Undefine and delete the parsers. 8c⟩

return 0;
}

lispy: a simple lisp-like language 7

Welcome

What good is a Read-Eval-Print Loop (REPL) without a welcome
message? For now, simply print the version and describe how to exit.

7a ⟨Print version and exit information. 7a⟩≡
puts(”Lispy v1.4.0”);
puts(”Press ctrl-c to exit\n”);

Uses Lispy 7d.
This code is used in chunk 6c.

Defining the Language

In order to make sense of user input, we need to define a grammar.
7b ⟨lispy.mpc 7b⟩≡

number ”number” : /[-+]?[0-9]+(\.[0-9]+)?/ ;
symbol ”symbol” : /[a-za-Z_+௏%௤\/\\=<>!௏-]+/ ;
sexpr : ’(’ <symbol> <expr>+ ’)’ ;
qexpr : ’{’ (<symbol> | <expr>)* ’}’ ;
expr : <number> | <sexpr> | <qexpr> ;
lispy : /^/ <expr>௏ /$/ ;

Root chunk (not used in this document).

Describe this trickDescribe this trick
7c ⟨Load the Lispy grammar. 7c⟩≡

static const char LISPY_GRAMMAR[] = {
#include ”lispy.xxd”
};

Defines:
LISPY_GRAMMAR, used in chunk 8b.

This code is used in chunk 2a.

See: https://stackoverflow.com/a/
411000To implement the grammar, we need to create some parsers.

7d ⟨Define the language. 7d⟩≡
mpc_parser_t *Number = mpc_new(”number”);
mpc_parser_t *Symbol = mpc_new(”symbol”);
mpc_parser_t *Sexpr = mpc_new(”sexpr”);
mpc_parser_t *Qexpr = mpc_new(”qexpr”);
mpc_parser_t *Expr = mpc_new(”expr”);
mpc_parser_t *Lispy = mpc_new(”lispy”);

Defines:
Expr, used in chunk 8a.
Lispy, used in chunks 7–9.
Number, used in chunk 8a.
Qexpr, used in chunk 8a.
Sexpr, used in chunk 8a.
Symbol, used in chunk 8a.

Uses mpc_new 26f and mpc_parser_t 26f.
This definition is continued in chunk 8b.
This code is used in chunk 6c.

https://stackoverflow.com/a/411000
https://stackoverflow.com/a/411000

lispy: a simple lisp-like language 8

Finally, using the defined grammar and each of the ⟨created parsers 8a⟩,
8a ⟨created parsers 8a⟩≡

Number, Symbol, Sexpr, Qexpr, Expr, Lispy
Uses Expr 7d, Lispy 7d, Number 7d, Qexpr 7d, Sexpr 7d, and Symbol 7d.
This code is used in chunk 8.

... we can define the Lispy language.
8b ⟨Define the language. 7d⟩+≡

mpc_err_t *err = mpca_lang(MPCA_LANG_PREDICTIVE, LISPY_GRAMMAR,
⟨created parsers 8a⟩);

if (err చఌ NULL) {
puts(LISPY_GRAMMAR);
mpc_err_print(err);
mpc_err_delete(err);
exit(100);

}
Uses LISPY_GRAMMAR 7c, mpca_lang 26f, mpc_err_delete 26f, and mpc_err_print 26f.

Since we’re implementing this in C, we need to clean up after our-
selves. The mpc6 library makes this easy, by providing the mpc_cleanup 6 Daniel Holden. Micro Parser Com-

binators. https://github.com/
orangeduck/mpc, 2018b. Accessed:
2018-05-13

function.
8c ⟨Undefine and delete the parsers. 8c⟩≡

mpc_cleanup(6, ⟨created parsers 8a⟩);
Uses mpc_cleanup 26f.
This code is used in chunk 6c.

R is for Read

To implement the R in REPL, use readline from libedit7. 7 Jess Thrysoee. Editline Library
(libedit) – port of netbsd command
line editor library. http://thrysoee.
dk/editline/, 2017. Accessed: 2018-
05-13

8d ⟨Read a line of user input. 8d⟩≡
char *input = readline(”> ”);

Defines:
input, used in chunks 8, 9, and 21b.

Uses readline 26e.
This code is used in chunk 20d.

To check whether user input is nonempty, and thus whether we
should continue looping, use the following expression.

8e ⟨input is nonempty 8e⟩≡
input && *input

Uses input 8d.
This code is used in chunk 21a.

https://github.com/orangeduck/mpc
https://github.com/orangeduck/mpc
http://thrysoee.dk/editline/
http://thrysoee.dk/editline/

lispy: a simple lisp-like language 9

Here, input is functionally equivalent to input చఌ NULL, and
*input is functionally equivalent to input[0] చఌ '\0', i.e. input is
non-null and nonempty, respectively.

So long as input is nonempty, add it to the libedit8 history table. 8 Jess Thrysoee. Editline Library
(libedit) – port of netbsd command
line editor library. http://thrysoee.
dk/editline/, 2017. Accessed: 2018-
05-13

9a ⟨Add input to the history table. 9a⟩≡
add_history(input);

Uses add_history 26e and input 8d.
This code is used in chunk 21a.

Declare a variable, parsed, to hold the results of attempting to
parse user input as Lispy code.

9b ⟨Declare a variable to hold parsing results. 9b⟩≡
mpc_result_t parsed;

Defines:
parsed, used in chunks 9 and 20b.

Uses mpc_result_t 26f.
This code is used in chunk 21a.

To attempt said parsing, use mpc_parse, the result of which we can
branch on to handle success and failure.

9c ⟨the input can be parsed as Lispy code 9c⟩≡
mpc_parse(”<stdin>”, input, Lispy, &parsed)

Uses Lispy 7d, input 8d, mpc_parse 26f, and parsed 9b.
This code is used in chunk 21a.

E is for Eval(uate)

Since our terms consist of only numbers and operations thereon,
the result of evaluating a Lispy expression can be represented as a
double-precision number.

9d ⟨Eval(uate) the input. 9d⟩≡
mpc_ast_t *ast = parsed.output;

lval *result = lval_eval(lval_read(ast));
Defines:

ast, used in chunks 6b, 9, 10, and 19d.
Uses lval 21c, lval_read 6b, mpc_ast_t 26f, and parsed 9b.
This code is used in chunk 21a.

Describe the evaluation strategyDescribe the evaluation strategy
If the abstract syntax tree (AST) is tagged as a number, convert it

to a double.
9e ⟨Read a Lispy value. 9e⟩≡

if (strstr(astశ>tag, ”number”))
return lval_read_num(ast);

Uses ast 9d and strstr 26d.
This definition is continued in chunks 10 and 11c.
This code is used in chunk 6b.

http://thrysoee.dk/editline/
http://thrysoee.dk/editline/

lispy: a simple lisp-like language 10

Describe thisDescribe this

10a ⟨Read a number. 10a⟩≡
errno = 0;
double num = strtod(astశ>contents, NULL);
return errno చఌ ERANGE ? lval_num(num) : lval_err(LERR_BAD_NUM);

Uses ast 9d, lval_err 23c, lval_num 22b, and strtod 26b.
This code is used in chunk 6b.

If the AST is tagged as a symbol, convert it to one.
10b ⟨Read a Lispy value. 9e⟩+≡

if (strstr(astశ>tag, ”symbol”))
return lval_sym(astశ>contents);

Uses ast 9d, lval_sym 23d, and strstr 26d.

Describe thisDescribe this

10c ⟨Read a Lispy value. 9e⟩+≡
lval *val = NULL;

Uses lval 21c.

If we’re at the root of the AST, create an empty list.
10d ⟨Read a Lispy value. 9e⟩+≡

if (!strcmp(astశ>tag, ”>”))
val = lval_sexpr();

Uses ast 9d, lval_sexpr 24a, and strcmp 26d.

If it’s tagged as a Q-expression, create an empty list.
10e ⟨Read a Lispy value. 9e⟩+≡

if (strstr(astశ>tag, ”qexpr”))
val = lval_qexpr();

Uses ast 9d, lval_qexpr 24b, and strstr 26d.

Similarly if it’s tagged as an S-expression, create an empty list.
10f ⟨Read a Lispy value. 9e⟩+≡

if (strstr(astశ>tag, ”sexpr”))
val = lval_sexpr();

Uses ast 9d, lval_sexpr 24a, and strstr 26d.

Describe thisDescribe this

10g ⟨Read a Lispy value. 9e⟩+≡
for (int i = 0; i < astశ>children_num; i++) {

if(!strcmp(astశ>children[i]శ>contents, ”(”)) continue;
if(!strcmp(astశ>children[i]శ>contents, ”)”)) continue;
if(!strcmp(astశ>children[i]శ>contents, ”{”)) continue;
if(!strcmp(astశ>children[i]శ>contents, ”}”)) continue;
if(!strcmp(astశ>children[i]శ>tag, ”regex”)) continue;
val = lval_add(val, lval_read(astశ>children[i]));

}

Uses ast 9d, lval_add 2b, lval_read 6b, and strcmp 26d.

lispy: a simple lisp-like language 11

11a ⟨Reallocate the memory used. 11a⟩≡
xsశ>cell = realloc(xsశ>cell, sizeof(lval *) * xsశ>count);

Uses lval 21c.
This code is used in chunks 11b and 19a.

Describe this, incl. how it’s not
cons
Describe this, incl. how it’s not
cons11b ⟨Add an element to an S-expression. 11b⟩≡

xsశ>count++;
⟨Reallocate the memory used. 11a⟩
xsశ>cell[xsశ>count - 1] = x;

This code is used in chunk 2b.

Finally, return the Lispy value.
11c ⟨Read a Lispy value. 9e⟩+≡

return val;

11d ⟨For each argument 11d⟩≡
for (int i = 0; i < argsశ>count; i++)

This code is used in chunks 11g, 15f, and 17e.

11e ⟨the argument is not a number 11e⟩≡
!lval_is_num(argsశ>cell[i])

Uses lval_is_num 22c.
This code is used in chunk 11g.

11f ⟨Delete the arguments and return a bad number error. 11f⟩≡
lval_del(args);
return lval_err(LERR_BAD_NUM);

Uses lval_del 25a and lval_err 23c.
This code is used in chunk 11g.

Evaluating built-in operations

Ensure all arguments are numbers.
11g ⟨Eval(uate) a built-in operation. 11g⟩≡

⟨For each argument 11d⟩ {
if (⟨the argument is not a number 11e⟩) {

⟨Delete the arguments and return a bad number error. 11f⟩
}

}

This definition is continued in chunks 12 and 14a.
This code is used in chunk 5c.

11h ⟨Pop the first element. 11h⟩≡
lval_pop(args, 0);

Uses lval_pop 2c.
This code is used in chunks 12 and 18a.

lispy: a simple lisp-like language 12

Pop the first element.
12a ⟨Eval(uate) a built-in operation. 11g⟩+≡

lval *result = ⟨Pop the first element. 11h⟩

Uses lval 21c.

If the operation is unary subtraction, negate the operand.
12b ⟨Eval(uate) a built-in operation. 11g⟩+≡

if (!strcmp(op, ”-”) && !argsశ>count)
resultశ>num = -resultశ>num;

Uses strcmp 26d.

12c ⟨Pop the next element. 12c⟩≡
lval *y = ⟨Pop the first element. 11h⟩

Uses lval 21c.
This code is used in chunk 12d.

12d ⟨Eval(uate) a built-in operation. 11g⟩+≡
while (argsశ>count > 0) {

⟨Pop the next element. 12c⟩

⟨Perform a built-in operation. 12e⟩
}

If the op is ”+”, perform addition.
12e ⟨Perform a built-in operation. 12e⟩≡

if (!strcmp(op, ”+”)) {
resultశ>num += yశ>num;

}
Uses strcmp 26d.
This definition is continued in chunks 12 and 13.
This code is used in chunk 12d.

If the op is ”-”, perform subtraction.
12f ⟨Perform a built-in operation. 12e⟩+≡

else if (!strcmp(op, ”-”)) {
resultశ>num -= yశ>num;

}
Uses strcmp 26d.

If the op is ”*”, perform multiplication.
12g ⟨Perform a built-in operation. 12e⟩+≡

else if (!strcmp(op, ”*”)) {
resultశ>num ௏= yశ>num;

}
Uses strcmp 26d.

lispy: a simple lisp-like language 13

If the op is ”/”, perform division, returning the appropriate error
and cleaning up when trying to divide by zero.

13a ⟨Perform a built-in operation. 12e⟩+≡
else if (!strcmp(op, ”/”)) {

if (!yశ>num) {
lval_del(result);
lval_del(y);
result = lval_err(LERR_DIV_ZERO);
break;

}
resultశ>num /= yశ>num;

}
Uses lval_del 25a, lval_err 23c, and strcmp 26d.

If the op is ”%”, calculate the integer modulo, returning the appro-
priate error when trying to divide by zero.

13b ⟨Perform a built-in operation. 12e⟩+≡
else if (!strcmp(op, ”%”)) {

if (!yశ>num) {
lval_del(result);
lval_del(y);
result = lval_err(LERR_DIV_ZERO);
break;

}
resultశ>num = fmod(resultశ>num, yశ>num);

}
Uses fmod 26c, lval_del 25a, lval_err 23c, and strcmp 26d.

If the op is ”^”, perform exponentiation.
13c ⟨Perform a built-in operation. 12e⟩+≡

else if (!strcmp(op, ”^”)) {
resultశ>num = pow(resultశ>num, yశ>num);

}
Uses pow 26c and strcmp 26d.

Otherwise, return a LERR_BAD_OP error.
13d ⟨Perform a built-in operation. 12e⟩+≡

else {
lval_del(result);
lval_del(y);
result = lval_err(LERR_BAD_OP);
break;

}
Uses lval_del 25a and lval_err 23c.

Delete y, now that we’re done with it.
13e ⟨Perform a built-in operation. 12e⟩+≡

lval_del(y);
Uses lval_del 25a.

lispy: a simple lisp-like language 14

Delete the input expression and return the result.
14a ⟨Eval(uate) a built-in operation. 11g⟩+≡

lval_del(args);

return result;
Uses lval_del 25a.

Built-in functions

If the function name is list, convert the given S-expression to a Q-
expression and return it.

14b ⟨Evaluate a built-in function or operation. 14b⟩≡
if (!strcmp(”list”, fname))

return builtin_list(args);

Uses builtin_list 4b and strcmp 26d.
This definition is continued in chunks 14–17.
This code is used in chunk 5d.

14c ⟨Convert an S-expression to a Q-expression. 14c⟩≡
argsశ>type = LVAL_QEXPR;
return args;

Uses LVAL_QEXPR 22a.
This code is used in chunk 4b.

If the function name is head, pop the list and delete the rest.
14d ⟨Evaluate a built-in function or operation. 14b⟩+≡

if (!strcmp(”head”, fname))
return builtin_head(args);

Uses builtin_head 4c and strcmp 26d.

Ensure there is exactly one argument.
14e ⟨Pop the list and delete the rest. 14e⟩≡

LVAL_ASSERT(args, argsశ>count ఋఌ 1,
”too many arguments for ’head’”);

This definition is continued in chunks 14 and 15.
This code is used in chunk 4c.

Ensure the first argument is a Q-expression.
14f ⟨Pop the list and delete the rest. 14e⟩+≡

LVAL_ASSERT(args, argsశ>cell[0]శ>type ఋఌ LVAL_QEXPR,
”invalid argument for ’head’”);

Uses LVAL_QEXPR 22a.

Ensure the list passed to head is nonempty.
14g ⟨Pop the list and delete the rest. 14e⟩+≡

LVAL_ASSERT(args, argsశ>cell[0]శ>count,
”cannot get ’head’ of the empty list”);

Take the first element of the list.
14h ⟨Pop the list and delete the rest. 14e⟩+≡

lval *val = lval_take(args, 0);
Uses lval 21c and lval_take 3a.

lispy: a simple lisp-like language 15

Delete the rest.
15a ⟨Pop the list and delete the rest. 14e⟩+≡

while (valశ>count > 1)
lval_del(lval_pop(val, 1));

Uses lval_del 25a and lval_pop 2c.

Return the head of the list.
15b ⟨Pop the list and delete the rest. 14e⟩+≡

return val;
If the function name is tail, return the given Q-expression with the

first element removed.
15c ⟨Evaluate a built-in function or operation. 14b⟩+≡

if (!strcmp(”tail”, fname))
return builtin_tail(args);

Uses builtin_tail 4d and strcmp 26d.

Split this up and describeSplit this up and describe
15d ⟨Return the tail of a list. 15d⟩≡

LVAL_ASSERT(args, argsశ>count ఋఌ 1,
”too many arguments for ’tail’”);

LVAL_ASSERT(args, argsశ>cell[0]శ>type ఋఌ LVAL_QEXPR,
”invalid argument for ’tail’”);

LVAL_ASSERT(args, argsశ>cell[0]శ>count,
”cannot get ’tail’ of the empty list”);

lval *val = lval_take(args, 0);
lval_del(lval_pop(val, 0));

return val;
Uses LVAL_QEXPR 22a, lval 21c, lval_del 25a, lval_pop 2c, and lval_take 3a.
This code is used in chunk 4d.

If the function name is join, concatenate the given Q-expressions.
15e ⟨Evaluate a built-in function or operation. 14b⟩+≡

if (!strcmp(”join”, fname))
return builtin_join(args);

Uses builtin_join 4e and strcmp 26d.

Ensure every argument is a Q-expression.
15f ⟨Return the concatenation of lists. 15f⟩≡

⟨For each argument 11d⟩ {
LVAL_ASSERT(args, argsశ>cell[i]శ>type ఋఌ LVAL_QEXPR,

”invalid argument for ’join’”);
}

Uses LVAL_QEXPR 22a.
This definition is continued in chunk 16a.
This code is used in chunk 4e.

lispy: a simple lisp-like language 16

Describe thisDescribe this

16a ⟨Return the concatenation of lists. 15f⟩+≡
lval *res = lval_pop(args, 0);

while (argsశ>count) {
res = lval_join(res, lval_pop(args, 0));

}

lval_del(args);

return res;

Uses lval 21c, lval_del 25a, lval_join 3b, and lval_pop 2c.

Describe thisDescribe this

16b ⟨Add every y in ys to xs. 16b⟩≡
while (ysశ>count) {

xs = lval_add(xs, lval_pop(ys, 0));
}

lval_del(ys);

return xs;
Uses lval_add 2b, lval_del 25a, and lval_pop 2c.
This code is used in chunk 3b.

If the function name is eval, convert a given Q-expression to an
S-expression, and evaluate it.

16c ⟨Evaluate a built-in function or operation. 14b⟩+≡
if (!strcmp(”eval”, fname))

return builtin_eval(args);
Uses strcmp 26d.

Ensure exactly one Q-expression is passed to eval.
16d ⟨Evaluate a Q-expression. 16d⟩≡

LVAL_ASSERT(args, argsశ>count ఋఌ 1,
”too many arguments for ’eval’”);

LVAL_ASSERT(args, argsశ>cell[0]శ>type ఋఌ LVAL_QEXPR,
”invalid argument for ’eval’”);

Uses LVAL_QEXPR 22a.
This definition is continued in chunk 17a.
This code is used in chunk 5b.

lispy: a simple lisp-like language 17

Convert the Q-expression to an S-expression, by changing it’s type,
then evaluate and return it.

17a ⟨Evaluate a Q-expression. 16d⟩+≡
lval *expr = lval_take(args, 0);
exprశ>type = LVAL_SEXPR;

return lval_eval(expr);
Uses LVAL_SEXPR 22a, lval 21c, and lval_take 3a.

If the function name is a built-in operation, perform and return it.
17b ⟨Evaluate a built-in function or operation. 14b⟩+≡

if (strstr(”+-/௏௤%”, fname))
return builtin_op(fname, args);

Uses strstr 26d.

Otherwise, free the memory used by args and return an error.
17c ⟨Evaluate a built-in function or operation. 14b⟩+≡

lval_del(args);

return lval_err(LERR_BAD_FUNC);
Uses lval_del 25a and lval_err 23c.

Evaluating (S)-expressions

If the expression is empty, return it;
17d ⟨Evaluate an S-expression. 17d⟩≡

if (!argsశ>count)
return args;

This definition is continued in chunks 17 and 18.
This code is used in chunk 5e.

17e ⟨Evaluate an S-expression. 17d⟩+≡
⟨For each argument 11d⟩ {

argsశ>cell[i] = lval_eval(argsశ>cell[i]);
if (argsశ>cell[i]శ>type ఋఌ LVAL_ERR)

return lval_take(args, i);
}

Uses LVAL_ERR 22a 22a and lval_take 3a.

If we’re dealing with a single expression, return it.
17f ⟨Evaluate an S-expression. 17d⟩+≡

if (argsశ>count ఋఌ 1)
return lval_take(args, 0);

Uses lval_take 3a.

lispy: a simple lisp-like language 18

18a ⟨Evaluate an S-expression. 17d⟩+≡
lval *car = ⟨Pop the first element. 11h⟩;
if (carశ>type చఌ LVAL_SYM) {

lval_del(car);
lval_del(args);

return lval_err(LERR_BAD_SEXPR);
}

Uses LVAL_SYM 22a, lval 21c, lval_del 25a, and lval_err 23c.

18b ⟨Evaluate an S-expression. 17d⟩+≡
lval *result = builtin(carశ>sym, args);
lval_del(car);

return result;
Uses builtin 5d, lval 21c, and lval_del 25a.

If, and only if, an expression is an S-expression, we must evaluate it
recursively.

18c ⟨Evaluate an expression. 18c⟩≡
if (valశ>type ఋఌ LVAL_SEXPR)

return lval_eval_sexpr(val);

return val;
Uses LVAL_SEXPR 22a.
This code is used in chunk 6a.

Extract the element at index i.
18d ⟨Extract an element and shift the list. 18d⟩≡

lval *elem = xsశ>cell[i];

Uses lval 21c.
This definition is continued in chunks 18 and 19a.
This code is used in chunk 2c.

Shift memory after the element at index i.
18e ⟨Extract an element and shift the list. 18d⟩+≡

memmove(&xsశ>cell[i], &xsశ>cell[i + 1],
sizeof(lval *) * (xsశ>count - i - 1));

Uses lval 21c.

Decrease the count.
18f ⟨Extract an element and shift the list. 18d⟩+≡

xsశ>count–;

18g ⟨Return the extracted element. 18g⟩≡
return elem;

This code is used in chunk 19.

lispy: a simple lisp-like language 19

Reallocate the memory used and return the extracted element.
19a ⟨Extract an element and shift the list. 18d⟩+≡

⟨Reallocate the memory used. 11a⟩

⟨Return the extracted element. 18g⟩

Describe thisDescribe this

19b ⟨Pop the list then delete it. 19b⟩≡
lval *elem = lval_pop(xs, i);
lval_del(xs);

Uses lval 21c, lval_del 25a, and lval_pop 2c.
This definition is continued in chunk 19c.
This code is used in chunk 3a.

Return the extracted element.
19c ⟨Pop the list then delete it. 19b⟩+≡

⟨Return the extracted element. 18g⟩

P is for Print

Upon success, print the result and delete the AST.
19d ⟨Print the result and delete the AST. 19d⟩≡

lval_println(result);

mpc_ast_delete(ast);
Uses ast 9d, lval_println 4a, and mpc_ast_delete 26f.
This code is used in chunk 21a.

Describe thisDescribe this
Print the opening character.

19e ⟨Print an expression. 19e⟩≡
putchar(open);

This definition is continued in chunk 19.
This code is used in chunk 3d.

Print all but the last element with a trailing space.
19f ⟨Print an expression. 19e⟩+≡

for (int i = 0; i < exprశ>count; i++) {
lval_print(exprశ>cell[i]);
if (i చఌ (exprశ>count - 1))

putchar(’ ’);
}

Uses lval_print 3e.

Print the closing character.
19g ⟨Print an expression. 19e⟩+≡

putchar(close);

lispy: a simple lisp-like language 20

20a ⟨Print a Lispy value. 20a⟩≡
switch (valశ>type) {
case LVAL_ERR:

printf(”Error: %s”, valశ>err);
break;

case LVAL_NUM:
printf(”%g”, valశ>num);
break;

case LVAL_QEXPR:
lval_expr_print(val, ’{’, ’}’);
break;

case LVAL_SEXPR:
lval_expr_print(val, ’(’, ’)’);
break;

case LVAL_SYM:
fputs(valశ>sym, stdout);
break;

}
Uses LVAL_ERR 22a 22a, LVAL_NUM 22a, LVAL_QEXPR 22a, LVAL_SEXPR 22a,

LVAL_SYM 22a, lval_expr_print 3d, and printf 26a.
This code is used in chunk 3e.

Print and delete the error upon failure.
20b ⟨Print and delete the error. 20b⟩≡

mpc_err_print(parsed.error);
mpc_err_delete(parsed.error);

Uses mpc_err_delete 26f, mpc_err_print 26f, and parsed 9b.
This code is used in chunk 21a.

L is for Loop

20c ⟨Loop until the input is empty. 20c⟩≡
bool nonempty;
do {

⟨Read, eval(uate), and print. 20d⟩
} while (nonempty);

Defines:
nonempty, used in chunk 21a.

Uses bool 25c.
This code is used in chunk 6c.

As previously described, in the body of the loop, Read a line of
user input.

20d ⟨Read, eval(uate), and print. 20d⟩≡
⟨Read a line of user input. 8d⟩

This definition is continued in chunk 21.
This code is used in chunk 20c.

lispy: a simple lisp-like language 21

If, and only if, it’s not empty, add it to the history table, Eval(uate)
it, and Print the result.

21a ⟨Read, eval(uate), and print. 20d⟩+≡
if ((nonempty = (⟨input is nonempty 8e⟩))) {

⟨Add input to the history table. 9a⟩

⟨Declare a variable to hold parsing results. 9b⟩
if (⟨the input can be parsed as Lispy code 9c⟩) {

⟨Eval(uate) the input. 9d⟩
⟨Print the result and delete the AST. 19d⟩

} else {
⟨Print and delete the error. 20b⟩

}
}

Uses nonempty 20c.

Once we’re done, deallocate the space pointed to by input, making
it available for futher allocation.

21b ⟨Read, eval(uate), and print. 20d⟩+≡
free(input);

Uses free 26b and input 8d.
N.B. This is a no-op when !input.

Error Handling

Describe this structDescribe this struct

21c ⟨Define the Lispy data structures. 21c⟩≡
typedef struct lval {

lval_type_t type;
union {

double num;
char *err;
char *sym;

};
int count;
struct lval **cell;

} lval;

Defines:
lval, used in chunks 2–6, 9–12, 14–19, and 22–25.

Uses lval_type_t 22a.
This definition is continued in chunks 22–25.
This code is used in chunk 2a.

lispy: a simple lisp-like language 22

A Lispy value can be either a number or an error.
22a ⟨Define possible lval and error types. 22a⟩≡

typedef enum {
LVAL_ERR,
LVAL_NUM,
LVAL_QEXPR,
LVAL_SEXPR,
LVAL_SYM

} lval_type_t;

Defines:
LVAL_ERR, used in chunks 17e, 20a, 23c, and 25a.
LVAL_NUM, used in chunks 20a, 22, and 25a.
LVAL_QEXPR, used in chunks 14–16, 20a, 24b, and 25a.
LVAL_SEXPR, used in chunks 17a, 18c, 20a, 24a, and 25a.
LVAL_SYM, used in chunks 18a, 20a, 23d, and 25a.
lval_type_t, used in chunk 21c.

This code is used in chunk 2a.

Define a constructor for numbers.
22b ⟨Define the Lispy data structures. 21c⟩+≡

lval *lval_num(double num)
{

lval *val = malloc(sizeof(lval));
valశ>type = LVAL_NUM;
valశ>num = num;

return val;
}

Defines:
lval_num, used in chunk 10a.

Uses LVAL_NUM 22a and lval 21c.

Define a convenient predicate for numbers.
22c ⟨Define the Lispy data structures. 21c⟩+≡

bool lval_is_num(lval *val)
{

return valశ>type ఋఌ LVAL_NUM;
}

Defines:
lval_is_num, used in chunk 11e.

Uses LVAL_NUM 22a, bool 25c, and lval 21c.

lispy: a simple lisp-like language 23

Define a macro for asserting a condition or returning an error.
23a ⟨Define some useful macros. 23a⟩≡

#define LVAL_ASSERT(args, cond, err) \
if (!(cond)) { \

lval_del(args); \
return lval_err(err); \

}

Uses lval_del 25a and lval_err 23c.
This definition is continued in chunk 23b.
This code is used in chunk 2a.

23b ⟨Define some useful macros. 23a⟩+≡
#define LERR_BAD_FUNC ”unknown function”
#define LERR_BAD_NUM ”invalid number”
#define LERR_BAD_OP ”invalid operation”
#define LERR_DIV_ZERO ”division by zero”
#define LERR_BAD_SEXPR ”invalid S-expression”
Define a constructor for errors.

23c ⟨Define the Lispy data structures. 21c⟩+≡
lval *lval_err(char *err)
{

lval *val = malloc(sizeof(lval));
valశ>type = LVAL_ERR;
valశ>err = err;

return val;
}

Defines:
lval_err, used in chunks 10a, 11f, 13, 17c, 18a, and 23a.

Uses LVAL_ERR 22a 22a and lval 21c.

Define a constructor for symbol.
23d ⟨Define the Lispy data structures. 21c⟩+≡

lval *lval_sym(char *s)
{

lval *val = malloc(sizeof(lval));
valశ>type = LVAL_SYM;
valశ>sym = malloc(strlen(s) + 1);
strcpy(valశ>sym, s);

return val;
}

Defines:
lval_sym, used in chunk 10b.

Uses LVAL_SYM 22a and lval 21c.

lispy: a simple lisp-like language 24

Define a constructor for an S-expression.
24a ⟨Define the Lispy data structures. 21c⟩+≡

lval *lval_sexpr(void)
{

lval *val = malloc(sizeof(lval));
valశ>type = LVAL_SEXPR;
valశ>count = 0;
valశ>cell = NULL;

return val;
}

Defines:
lval_sexpr, used in chunk 10.

Uses LVAL_SEXPR 22a and lval 21c.

Define a constructor for a Q-expression.
24b ⟨Define the Lispy data structures. 21c⟩+≡

lval *lval_qexpr(void)
{

lval *val = malloc(sizeof(lval));
valశ>type = LVAL_QEXPR;
valశ>count = 0;
valశ>cell = NULL;

return val;
}

Defines:
lval_qexpr, used in chunk 10e.

Uses LVAL_QEXPR 22a and lval 21c.

lispy: a simple lisp-like language 25

Define a destructor for lval*.
25a ⟨Define the Lispy data structures. 21c⟩+≡

void lval_del(lval *val)
{

switch(valశ>type) {
case LVAL_ERR:

free(valశ>err);
break;

case LVAL_NUM:
break;

case LVAL_QEXPR:
case LVAL_SEXPR:

for (int i = 0; i < valశ>count; i++)
lval_del(valశ>cell[i]);

free(valశ>cell);
break;

case LVAL_SYM:
free(valశ>sym);
break;

}

free(val);
}

Defines:
lval_del, used in chunks 11f, 13–19, and 23a.

Uses LVAL_ERR 22a 22a, LVAL_NUM 22a, LVAL_QEXPR 22a, LVAL_SEXPR 22a,
LVAL_SYM 22a, free 26b, and lval 21c.

Headers

Describe headersDescribe headers

25b ⟨Include the necessary headers. 25b⟩≡
⟨Include the boolean type and values. 25c⟩
⟨Include the standard I/O functions. 26a⟩
⟨Include the standard library definitions. 26b⟩
⟨Include some mathematical definitions. 26c⟩
⟨Include some string operations. 26d⟩

⟨Include the line editing functions from libedit. 26e⟩
⟨Include the micro parser combinator definitions. 26f⟩

This code is used in chunk 2a.

25c ⟨Include the boolean type and values. 25c⟩≡
#include <stdbool.h>

Defines:
bool, used in chunks 20c and 22c.

This code is used in chunk 25b.

lispy: a simple lisp-like language 26

26a ⟨Include the standard I/O functions. 26a⟩≡
#include <stdio.h>

Defines:
printf, used in chunk 20a.

This code is used in chunk 25b.

26b ⟨Include the standard library definitions. 26b⟩≡
#include <stdlib.h>

Defines:
free, used in chunks 21b and 25a.
strtod, used in chunk 10a.

This code is used in chunk 25b.

26c ⟨Include some mathematical definitions. 26c⟩≡
#include <math.h>

Defines:
fmod, used in chunk 13b.
pow, used in chunk 13c.

This code is used in chunk 25b.

26d ⟨Include some string operations. 26d⟩≡
#include <string.h>

Defines:
strcmp, used in chunks 10 and 12–16.
strstr, used in chunks 9, 10, and 17b.

This code is used in chunk 25b.

26e ⟨Include the line editing functions from libedit. 26e⟩≡
#include <editline/readline.h>

Defines:
add_history, used in chunk 9a.
readline, used in chunks 26e and 8d.

This code is used in chunk 25b.

26f ⟨Include the micro parser combinator definitions. 26f⟩≡
#include <mpc.h>

Defines:
mpca_lang, used in chunk 8b.
mpc_ast_delete, used in chunk 19d.
mpc_ast_print, never used.
mpc_ast_t, used in chunks 6b and 9d.
mpc_cleanup, used in chunks 26f and 8c.
mpc_err_delete, used in chunks 8b and 20b.
mpc_err_print, used in chunks 8b and 20b.
mpc_new, used in chunk 7d.
mpc_parse, used in chunks 26f and 9c.
mpc_parser_t, used in chunk 7d.
mpc_result_t, used in chunk 9b.

This code is used in chunk 25b.

lispy: a simple lisp-like language 27

Full Listings

lispy.mpc:

number ”number” : /[-+]?[0-9]+(\.[0-9]+)?/ ;
symbol ”symbol” : /[a-za-Z_+௏%௤\/\\=<>!௏-]+/ ;
sexpr : '(' <symbol> <expr>+ ')' ;
qexpr : '{' (<symbol> | <expr>)* '}' ;
expr : <number> | <sexpr> | <qexpr> ;
lispy : /^/ <expr>௏ /$/ ;

https://github.com/yurrriq/lispy/blob/master/lispy.mpc

lispy: a simple lisp-like language 28

lispy.c:

1 #include <stdbool.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <math.h>
5 #include <string.h>
6

7 #include <editline/readline.h>
8 #include <mpc.h>
9

10

11 #define LVAL_ASSERT(args, cond, err) \
12 if (!(cond)) { \
13 lval_del(args); \
14 return lval_err(err); \
15 }
16

17 #define LERR_BAD_FUNC ”unknown function”
18 #define LERR_BAD_NUM ”invalid number”
19 #define LERR_BAD_OP ”invalid operation”
20 #define LERR_DIV_ZERO ”division by zero”
21 #define LERR_BAD_SEXPR ”invalid S-expression”
22

23

24 static const char LISPY_GRAMMAR[] = {
25 #include ”lispy.xxd”
26 };
27

28

29 typedef enum {
30 LVAL_ERR,
31 LVAL_NUM,
32 LVAL_QEXPR,
33 LVAL_SEXPR,
34 LVAL_SYM
35 } lval_type_t;
36

37

38

39 typedef struct lval {
40 lval_type_t type;
41 union {
42 double num;
43 char *err;
44 char *sym;
45 };
46 int count;
47 struct lval **cell;
48 } lval;
49

50

https://github.com/yurrriq/lispy/blob/master/lispy.c

lispy: a simple lisp-like language 29

51 lval *lval_num(double num)
52 {
53 lval *val = malloc(sizeof(lval));
54 valశ>type = LVAL_NUM;
55 valశ>num = num;
56

57 return val;
58 }
59

60

61 bool lval_is_num(lval * val)
62 {
63 return valశ>type ఋఌ LVAL_NUM;
64 }
65

66

67 lval *lval_err(char *err)
68 {
69 lval *val = malloc(sizeof(lval));
70 valశ>type = LVAL_ERR;
71 valశ>err = err;
72

73 return val;
74 }
75

76

77 lval *lval_sym(char *s)
78 {
79 lval *val = malloc(sizeof(lval));
80 valశ>type = LVAL_SYM;
81 valశ>sym = malloc(strlen(s) + 1);
82 strcpy(valశ>sym, s);
83

84 return val;
85 }
86

87

88 lval *lval_sexpr(void)
89 {
90 lval *val = malloc(sizeof(lval));
91 valశ>type = LVAL_SEXPR;
92 valశ>count = 0;
93 valశ>cell = NULL;
94

95 return val;
96 }
97

98

99 lval *lval_qexpr(void)
100 {
101 lval *val = malloc(sizeof(lval));

lispy: a simple lisp-like language 30

102 valశ>type = LVAL_QEXPR;
103 valశ>count = 0;
104 valశ>cell = NULL;
105

106 return val;
107 }
108

109

110 void lval_del(lval * val)
111 {
112 switch (valశ>type) {
113 case LVAL_ERR:
114 free(valశ>err);
115 break;
116 case LVAL_NUM:
117 break;
118 case LVAL_QEXPR:
119 case LVAL_SEXPR:
120 for (int i = 0; i < valశ>count; i++)
121 lval_del(valశ>cell[i]);
122 free(valశ>cell);
123 break;
124 case LVAL_SYM:
125 free(valశ>sym);
126 break;
127 }
128

129 free(val);
130 }
131

132

133 lval *lval_add(lval * xs, lval * x)
134 {
135 xsశ>count++;
136 xsశ>cell = realloc(xsశ>cell, sizeof(lval *) * xsశ>count);
137 xsశ>cell[xsశ>count - 1] = x;
138

139 return xs;
140 }
141

142

143 lval *lval_pop(lval * xs, int i)
144 {
145 lval *elem = xsశ>cell[i];
146

147 memmove(&xsశ>cell[i], &xsశ>cell[i + 1],
148 sizeof(lval *) * (xsశ>count - i - 1));
149

150 xsశ>count--;
151

152 xsశ>cell = realloc(xsశ>cell, sizeof(lval *) * xsశ>count);

lispy: a simple lisp-like language 31

153

154 return elem;
155 }
156

157

158 lval *lval_take(lval * xs, int i)
159 {
160 lval *elem = lval_pop(xs, i);
161 lval_del(xs);
162

163 return elem;
164 }
165

166

167 lval *lval_join(lval * xs, lval * ys)
168 {
169 while (ysశ>count) {
170 xs = lval_add(xs, lval_pop(ys, 0));
171 }
172

173 lval_del(ys);
174

175 return xs;
176 }
177

178

179 void lval_print(lval * val);
180

181

182 void lval_expr_print(lval * expr, char open, char close)
183 {
184 putchar(open);
185 for (int i = 0; i < exprశ>count; i++) {
186 lval_print(exprశ>cell[i]);
187 if (i చఌ (exprశ>count - 1))
188 putchar(' ');
189 }
190 putchar(close);
191 }
192

193

194 void lval_print(lval * val)
195 {
196 switch (valశ>type) {
197 case LVAL_ERR:
198 printf(”Error: %s”, valశ>err);
199 break;
200 case LVAL_NUM:
201 printf(”%g”, valశ>num);
202 break;
203 case LVAL_QEXPR:

lispy: a simple lisp-like language 32

204 lval_expr_print(val, '{', '}');
205 break;
206 case LVAL_SEXPR:
207 lval_expr_print(val, '(', ')');
208 break;
209 case LVAL_SYM:
210 fputs(valశ>sym, stdout);
211 break;
212 }
213 }
214

215

216 void lval_println(lval * val)
217 {
218 lval_print(val);
219 putchar('\n');
220 }
221

222

223 lval *builtin_list(lval * args)
224 {
225 argsశ>type = LVAL_QEXPR;
226 return args;
227 }
228

229

230 lval *builtin_head(lval * args)
231 {
232 LVAL_ASSERT(args, argsశ>count ఋఌ 1, ”too many arguments for 'head'”);
233 LVAL_ASSERT(args, argsశ>cell[0]శ>type ఋఌ LVAL_QEXPR,
234 ”invalid argument for 'head'”);
235 LVAL_ASSERT(args, argsశ>cell[0]శ>count,
236 ”cannot get 'head' of the empty list”);
237 lval *val = lval_take(args, 0);
238 while (valశ>count > 1)
239 lval_del(lval_pop(val, 1));
240 return val;
241 }
242

243

244 lval *builtin_tail(lval * args)
245 {
246 LVAL_ASSERT(args, argsశ>count ఋఌ 1, ”too many arguments for 'tail'”);
247 LVAL_ASSERT(args, argsశ>cell[0]శ>type ఋఌ LVAL_QEXPR,
248 ”invalid argument for 'tail'”);
249 LVAL_ASSERT(args, argsశ>cell[0]శ>count,
250 ”cannot get 'tail' of the empty list”);
251

252 lval *val = lval_take(args, 0);
253 lval_del(lval_pop(val, 0));
254

lispy: a simple lisp-like language 33

255 return val;
256 }
257

258

259 lval *builtin_join(lval * args)
260 {
261 for (int i = 0; i < argsశ>count; i++) {
262 LVAL_ASSERT(args, argsశ>cell[i]శ>type ఋఌ LVAL_QEXPR,
263 ”invalid argument for 'join'”);
264 }
265

266 lval *res = lval_pop(args, 0);
267

268 while (argsశ>count) {
269 res = lval_join(res, lval_pop(args, 0));
270 }
271

272 lval_del(args);
273

274 return res;
275

276 }
277

278 lval *lval_eval(lval * val);
279

280

281 lval *builtin_eval(lval * args)
282 {
283 LVAL_ASSERT(args, argsశ>count ఋఌ 1, ”too many arguments for 'eval'”);
284

285 LVAL_ASSERT(args, argsశ>cell[0]శ>type ఋఌ LVAL_QEXPR,
286 ”invalid argument for 'eval'”);
287

288 lval *expr = lval_take(args, 0);
289 exprశ>type = LVAL_SEXPR;
290

291 return lval_eval(expr);
292 }
293

294

295 lval *builtin_op(char *op, lval * args)
296 {
297 for (int i = 0; i < argsశ>count; i++) {
298 if (!lval_is_num(argsశ>cell[i])) {
299 lval_del(args);
300 return lval_err(LERR_BAD_NUM);
301 }
302 }
303

304 lval *result = lval_pop(args, 0);
305

lispy: a simple lisp-like language 34

306 if (!strcmp(op, ”-”) && !argsశ>count)
307 resultశ>num = -resultశ>num;
308

309 while (argsశ>count > 0) {
310 lval *y = lval_pop(args, 0);
311

312 if (!strcmp(op, ”+”)) {
313 resultశ>num += yశ>num;
314 } else if (!strcmp(op, ”-”)) {
315 resultశ>num -= yశ>num;
316 } else if (!strcmp(op, ”*”)) {
317 resultశ>num ௏= yశ>num;
318 } else if (!strcmp(op, ”/”)) {
319 if (!yశ>num) {
320 lval_del(result);
321 lval_del(y);
322 result = lval_err(LERR_DIV_ZERO);
323 break;
324 }
325 resultశ>num /= yశ>num;
326 } else if (!strcmp(op, ”%”)) {
327 if (!yశ>num) {
328 lval_del(result);
329 lval_del(y);
330 result = lval_err(LERR_DIV_ZERO);
331 break;
332 }
333 resultశ>num = fmod(resultశ>num, yశ>num);
334 } else if (!strcmp(op, ”^”)) {
335 resultశ>num = pow(resultశ>num, yశ>num);
336 } else {
337 lval_del(result);
338 lval_del(y);
339 result = lval_err(LERR_BAD_OP);
340 break;
341 }
342 lval_del(y);
343 }
344

345 lval_del(args);
346

347 return result;
348 }
349

350

351 lval *builtin(char *fname, lval * args)
352 {
353 if (!strcmp(”list”, fname))
354 return builtin_list(args);
355

356 if (!strcmp(”head”, fname))

lispy: a simple lisp-like language 35

357 return builtin_head(args);
358 if (!strcmp(”tail”, fname))
359 return builtin_tail(args);
360 if (!strcmp(”join”, fname))
361 return builtin_join(args);
362 if (!strcmp(”eval”, fname))
363 return builtin_eval(args);
364 if (strstr(”+-/௏௤%”, fname))
365 return builtin_op(fname, args);
366

367 lval_del(args);
368

369 return lval_err(LERR_BAD_FUNC);
370 }
371

372 lval *lval_eval_sexpr(lval * args)
373 {
374 if (!argsశ>count)
375 return args;
376 for (int i = 0; i < argsశ>count; i++) {
377 argsశ>cell[i] = lval_eval(argsశ>cell[i]);
378 if (argsశ>cell[i]శ>type ఋఌ LVAL_ERR)
379 return lval_take(args, i);
380 }
381

382 if (argsశ>count ఋఌ 1)
383 return lval_take(args, 0);
384

385 lval *car = lval_pop(args, 0);;
386 if (carశ>type చఌ LVAL_SYM) {
387 lval_del(car);
388 lval_del(args);
389

390 return lval_err(LERR_BAD_SEXPR);
391 }
392

393 lval *result = builtin(carశ>sym, args);
394 lval_del(car);
395

396 return result;
397 }
398

399

400 lval *lval_eval(lval * val)
401 {
402 if (valశ>type ఋఌ LVAL_SEXPR)
403 return lval_eval_sexpr(val);
404

405 return val;
406 }
407

lispy: a simple lisp-like language 36

408

409 lval *lval_read_num(mpc_ast_t * ast)
410 {
411 errno = 0;
412 double num = strtod(astశ>contents, NULL);
413 return errno చఌ ERANGE ? lval_num(num) : lval_err(LERR_BAD_NUM);
414 }
415

416

417 lval *lval_read(mpc_ast_t * ast)
418 {
419 if (strstr(astశ>tag, ”number”))
420 return lval_read_num(ast);
421

422 if (strstr(astశ>tag, ”symbol”))
423 return lval_sym(astశ>contents);
424

425 lval *val = NULL;
426 if (!strcmp(astశ>tag, ”>”))
427 val = lval_sexpr();
428 if (strstr(astశ>tag, ”qexpr”))
429 val = lval_qexpr();
430 if (strstr(astశ>tag, ”sexpr”))
431 val = lval_sexpr();
432

433 for (int i = 0; i < astశ>children_num; i++) {
434 if (!strcmp(astశ>children[i]శ>contents, ”(”))
435 continue;
436 if (!strcmp(astశ>children[i]శ>contents, ”)”))
437 continue;
438 if (!strcmp(astశ>children[i]శ>contents, ”{”))
439 continue;
440 if (!strcmp(astశ>children[i]శ>contents, ”}”))
441 continue;
442 if (!strcmp(astశ>children[i]శ>tag, ”regex”))
443 continue;
444 val = lval_add(val, lval_read(astశ>children[i]));
445 }
446

447 return val;
448 }
449

450

451 int main(int argc, char *argv[])
452 {
453 mpc_parser_t *Number = mpc_new(”number”);
454 mpc_parser_t *Symbol = mpc_new(”symbol”);
455 mpc_parser_t *Sexpr = mpc_new(”sexpr”);
456 mpc_parser_t *Qexpr = mpc_new(”qexpr”);
457 mpc_parser_t *Expr = mpc_new(”expr”);
458 mpc_parser_t *Lispy = mpc_new(”lispy”);

lispy: a simple lisp-like language 37

459

460 mpc_err_t *err = mpca_lang(MPCA_LANG_PREDICTIVE, LISPY_GRAMMAR,
461 Number, Symbol, Sexpr, Qexpr, Expr, Lispy);
462

463 if (err చఌ NULL) {
464 puts(LISPY_GRAMMAR);
465 mpc_err_print(err);
466 mpc_err_delete(err);
467 exit(100);
468 }
469

470 puts(”Lispy v1.4.0”);
471 puts(”Press ctrl-c to exit\n”);
472

473 bool nonempty;
474 do {
475 char *input = readline(”> ”);
476 if ((nonempty = (input && *input))) {
477 add_history(input);
478

479 mpc_result_t parsed;
480 if (mpc_parse(”<stdin>”, input, Lispy, &parsed)) {
481 mpc_ast_t *ast = parsed.output;
482

483 lval *result = lval_eval(lval_read(ast));
484 lval_println(result);
485

486 mpc_ast_delete(ast);
487 } else {
488 mpc_err_print(parsed.error);
489 mpc_err_delete(parsed.error);
490 }
491 }
492

493 free(input);
494 } while (nonempty);
495

496 mpc_cleanup(6, Number, Symbol, Sexpr, Qexpr, Expr, Lispy);
497

498 return 0;
499 }

lispy: a simple lisp-like language 38

Chunks

⟨Add an element to an S-expression. 11b⟩ 2b, 11b
⟨Add every y in ys to xs. 16b⟩ 3b, 16b
⟨Add input to the history table. 9a⟩ 9a, 21a
⟨Convert an S-expression to a Q-expression. 14c⟩ 4b, 14c
⟨Declare a variable to hold parsing results. 9b⟩ 9b, 21a
⟨Define possible lval and error types. 22a⟩ 2a, 22a
⟨Define some useful macros. 23a⟩ 2a, 23a, 23b
⟨Define the Lispy data structures. 21c⟩ 2a, 21c, 22b, 22c, 23c, 23d,

24a, 24b, 25a
⟨Define the language. 7d⟩ 6c, 7d, 8b
⟨Delete the arguments and return a bad number error. 11f⟩ 11f, 11g
⟨Evaluate a Q-expression. 16d⟩ 5b, 16d, 17a
⟨Evaluate a built-in function or operation. 14b⟩ 5d, 14b, 14d, 15c, 15e,

16c, 17b, 17c
⟨Eval(uate) a built-in operation. 11g⟩ 5c, 11g, 12a, 12b, 12d, 14a
⟨Evaluate an S-expression. 17d⟩ 5e, 17d, 17e, 17f, 18a, 18b
⟨Evaluate an expression. 18c⟩ 6a, 18c
⟨Eval(uate) the input. 9d⟩ 9d, 21a
⟨Extract an element and shift the list. 18d⟩ 2c, 18d, 18e, 18f, 19a
⟨For each argument 11d⟩ 11d, 11g, 15f, 17e
⟨Include some mathematical definitions. 26c⟩ 25b, 26c
⟨Include some string operations. 26d⟩ 25b, 26d
⟨Include the boolean type and values. 25c⟩ 25b, 25c
⟨Include the line editing functions from libedit. 26e⟩ 25b, 26e
⟨Include the micro parser combinator definitions. 26f⟩ 25b, 26f
⟨Include the necessary headers. 25b⟩ 2a, 25b
⟨Include the standard I/O functions. 26a⟩ 25b, 26a
⟨Include the standard library definitions. 26b⟩ 25b, 26b
⟨Load the Lispy grammar. 7c⟩ 2a, 7c
⟨Loop until the input is empty. 20c⟩ 6c, 20c
⟨Perform a built-in operation. 12e⟩ 12d, 12e, 12f, 12g, 13a, 13b, 13c,

13d, 13e
⟨Pop the first element. 11h⟩ 11h, 12a, 12c, 18a
⟨Pop the list and delete the rest. 14e⟩ 4c, 14e, 14f, 14g, 14h, 15a, 15b
⟨Pop the list then delete it. 19b⟩ 3a, 19b, 19c
⟨Pop the next element. 12c⟩ 12c, 12d
⟨Print a Lispy value. 20a⟩ 3e, 20a
⟨Print an expression. 19e⟩ 3d, 19e, 19f, 19g
⟨Print and delete the error. 20b⟩ 20b, 21a
⟨Print the result and delete the AST. 19d⟩ 19d, 21a
⟨Print version and exit information. 7a⟩ 6c, 7a
⟨Read a Lispy value. 9e⟩ 6b, 9e, 10b, 10c, 10d, 10e, 10f, 10g, 11c

lispy: a simple lisp-like language 39

⟨Read a line of user input. 8d⟩ 8d, 20d
⟨Read a number. 10a⟩ 6b, 10a
⟨Read, eval(uate), and print. 20d⟩ 20c, 20d, 21a, 21b
⟨Reallocate the memory used. 11a⟩ 11a, 11b, 19a
⟨Return the concatenation of lists. 15f⟩ 4e, 15f, 16a
⟨Return the extracted element. 18g⟩ 18g, 19a, 19c
⟨Return the tail of a list. 15d⟩ 4d, 15d
⟨Undefine and delete the parsers. 8c⟩ 6c, 8c
⟨created parsers 8a⟩ 8a, 8b, 8c
⟨input is nonempty 8e⟩ 8e, 21a
⟨lispy.c 2a⟩ 2a, 2b, 2c, 3a, 3b, 3c, 3d, 3e, 4a, 4b, 4c, 4d, 4e, 5a, 5b, 5c,

5d, 5e, 6a, 6b, 6c
⟨lispy.mpc 7b⟩ 7b
⟨the argument is not a number 11e⟩ 11e, 11g
⟨the input can be parsed as Lispy code 9c⟩ 9c, 21a

lispy: a simple lisp-like language 40

Index

Expr: 7d, 8a
LISPY_GRAMMAR: 7c, 8b
LVAL_ERR: 17e, 20a, 22a, 22a, 23c, 25a
LVAL_NUM: 20a, 22a, 22b, 22c, 25a
LVAL_QEXPR: 14c, 14f, 15d, 15f, 16d, 20a, 22a, 24b, 25a
LVAL_SEXPR: 17a, 18c, 20a, 22a, 24a, 25a
LVAL_SYM: 18a, 20a, 22a, 23d, 25a
Lispy: 7a, 7d, 8a, 9c
Number: 7d, 8a
Qexpr: 7d, 8a
Sexpr: 7d, 8a
Symbol: 7d, 8a
add_history: 9a, 26e
ast: 6b, 9d, 9e, 10a, 10b, 10d, 10e, 10f, 10g, 19d
bool: 20c, 22c, 25c
builtin: 5d, 18b
builtin_binop: 5c
builtin_head: 4c, 14d
builtin_join: 4e, 15e
builtin_list: 4b, 14b
builtin_tail: 4d, 15c
builtin_val: 5b
fmod: 13b, 26c
free: 21b, 25a, 26b
input: 8d, 8e, 8d, 8d, 9a, 9c, 8d, 21b
lval: 2b, 2c, 3a, 3b, 3c, 3d, 3e, 4a, 4b, 4c, 4d, 4e, 5a, 5b, 5c, 5d, 5e,

6a, 6b, 9d, 10c, 11a, 12a, 12c, 14h, 15d, 16a, 17a, 18a, 18b, 18d, 18e,
19b, 21c, 22b, 22c, 23c, 23d, 24a, 24b, 25a

lval_add: 2b, 10g, 16b
lval_del: 11f, 13a, 13b, 13d, 13e, 14a, 15a, 15d, 16a, 16b, 17c, 18a,

18b, 19b, 23a, 25a
lval_err: 10a, 11f, 13a, 13b, 13d, 17c, 18a, 23a, 23c
lval_expr_print: 3d, 3d, 20a
lval_is_num: 11e, 22c
lval_join: 3b, 16a
lval_num: 10a, 22b
lval_pop: 2c, 11h, 15a, 15d, 16a, 16b, 19b
lval_print: 3e, 3c, 3e, 4a, 19f
lval_println: 4a, 19d
lval_qexpr: 10e, 24b
lval_read: 6b, 9d, 10g
lval_sexpr: 10d, 10f, 24a

lispy: a simple lisp-like language 41

lval_sym: 10b, 23d
lval_take: 3a, 14h, 15d, 17a, 17e, 17f
lval_type_t: 21c, 22a
mpca_lang: 8b, 26f
mpc_ast_delete: 19d, 26f
mpc_ast_print: 26f
mpc_ast_t: 6b, 9d, 26f
mpc_cleanup: 26f, 8c, 26f
mpc_err_delete: 8b, 20b, 26f
mpc_err_print: 8b, 20b, 26f
mpc_new: 7d, 26f
mpc_parse: 26f, 9c, 26f
mpc_parser_t: 7d, 26f
mpc_result_t: 9b, 26f
nonempty: 20c, 21a
parsed: 9b, 9b, 9c, 9d, 20b
pow: 13c, 26c
printf: 20a, 26a
readline: 26e, 8d, 26e
strcmp: 10d, 10g, 12b, 12e, 12f, 12g, 13a, 13b, 13c, 14b, 14d, 15c, 15e,

16c, 26d
strstr: 9e, 10b, 10e, 10f, 17b, 26d
strtod: 10a, 26b

lispy: a simple lisp-like language 42

Glossary

AST abstract syntax tree, a tree representation of the abstract syn-
tactic structure of source code. 9, 10, 19

grammar 7, 8 Describe what a grammar isDescribe what a grammar is

parser 7 Describe what a parser isDescribe what a parser is

PLT programming language theory, 1 Describe programming language
theory
Describe programming language
theory

REPL Read-Eval-Print Loop, 7, 8
Describe what a REPL isDescribe what a REPL is

lispy: a simple lisp-like language 43

References

Daniel Holden. Build Your Own Lisp. http://buildyourownlisp.com,
2018a. Accessed: 2018-05-13.

Daniel Holden. Micro Parser Combinators. https://github.com/
orangeduck/mpc, 2018b. Accessed: 2018-05-13.

Norman Ramsey. Noweb – a simple, extensible tool for literate pro-
gramming. https://www.cs.tufts.edu/~nr/noweb/, 2012. Accessed:
2018-05-13.

Jess Thrysoee. Editline Library (libedit) – port of netbsd command
line editor library. http://thrysoee.dk/editline/, 2017. Accessed:
2018-05-13.

http://buildyourownlisp.com
https://github.com/orangeduck/mpc
https://github.com/orangeduck/mpc
https://www.cs.tufts.edu/~nr/noweb/
http://thrysoee.dk/editline/

lispy: a simple lisp-like language 44

Todo list

o Describe the outline . 2
o Describe this trick . 7
o Describe the evaluation strategy 9
o Describe this . 10
o Describe this . 10
o Describe this . 10
o Describe this, incl. how it’s not cons 11
o Split this up and describe . 15
o Describe this . 16
o Describe this . 16
o Describe this . 19
o Describe this . 19
o Describe this struct . 21
o Describe headers . 25
o Describe what a grammar is . 42
o Describe what a parser is . 42
o Describe programming language theory 42
o Describe what a REPL is . 42

	Outline
	Welcome
	Defining the Language
	R is for Read
	E is for Eval(uate)
	P is for Print
	L is for Loop
	Error Handling
	Headers
	Full Listings
	Chunks
	Index
	Glossary
	References

